(本小題滿分14分)

在數(shù)列中,,數(shù)列的前項和滿足

,的等比中項,.

(Ⅰ)求的值;

(Ⅱ)求數(shù)列的通項公式;

(Ⅲ)設(shè).證明.

 

【答案】

(Ⅰ),

(Ⅱ),

(Ⅲ)證明見解析.

【解析】本小題主要考查等差數(shù)列的概念、通項公式及前項和公式、等比數(shù)列的概念、等比中項、不等式證明、數(shù)學(xué)歸納等基礎(chǔ)知識,考查運算能力和推理論證能力及分類討論的思想方法.滿分14分

(Ⅰ)解:由題設(shè)有,解得.由題設(shè)又有,,解得

(Ⅱ)解法一:由題設(shè),,,及,,進(jìn)一步可得,,猜想,

先證,

當(dāng)時,,等式成立.當(dāng)時用數(shù)學(xué)歸納法證明如下:

(1當(dāng)時,,等式成立.

(2)假設(shè)時等式成立,即,

由題設(shè),  

    

①的兩邊分別減去②的兩邊,整理得,從而

這就是說,當(dāng)時等式也成立.根據(jù)(1)和(2)可知,等式對任何的成立.

綜上所述,等式對任何的都成立

再用數(shù)學(xué)歸納法證明

(1)當(dāng)時,,等式成立.

(2)假設(shè)當(dāng)時等式成立,即,那么

這就是說,當(dāng)時等式也成立.根據(jù)(1)和(2)可知,等式對任何的都成立.

解法二:由題設(shè)  

    

①的兩邊分別減去②的兩邊,整理得.所以

        ,

        ,

        ……

        

將以上各式左右兩端分別相乘,得,

由(Ⅰ)并化簡得,

止式對也成立.

由題設(shè)有,所以,即

,則,即.由,.所以,即,

解法三:由題設(shè)有,,所以

,

        

        ……

        ,

將以上各式左右兩端分別相乘,得,化簡得

,

由(Ⅰ),上式對也成立.所以,

上式對時也成立.

以下同解法二,可得,

(Ⅲ)證明:

當(dāng)時,

注意到,故

 

當(dāng),時,

當(dāng),時,

當(dāng),時,

所以

從而時,有

總之,當(dāng)時有,即

 

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊答案