【題目】已知函數(shù) ,其中 (為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)討論函數(shù)的單調(diào)性,并寫(xiě)出相應(yīng)的單調(diào)區(qū)間;

(Ⅱ)設(shè),若函數(shù)對(duì)任意都成立,求的最大值.

【答案】(I)見(jiàn)解析 (II) .

【解析】試題分析: (I)求出,對(duì)分別討論單調(diào)性,求出單調(diào)區(qū)間; (II)先對(duì)參數(shù)時(shí)分別討論,利用特殊值檢驗(yàn)不能恒成立,在時(shí),由函數(shù) 對(duì)任意 都成立,得,即, ,構(gòu)造關(guān)于a的新函數(shù),求導(dǎo)判斷單調(diào)性求出最大值,即的最大值.

試題解析:(I)因?yàn)?/span> ,

①當(dāng) 時(shí), 恒成立,函數(shù)上單調(diào)遞增;

②當(dāng) 時(shí),由 ,

所以當(dāng) 時(shí) ,此時(shí) 單調(diào)遞減;

當(dāng) 時(shí),此時(shí)單調(diào)遞增.

綜上,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為

當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為 ;

單調(diào)遞減區(qū)間為 .

(II) 由(I)知,當(dāng) 時(shí),函數(shù)在R上單調(diào)遞增且 時(shí), .

所以 不可能恒成立;

當(dāng) 時(shí),

當(dāng)時(shí),由函數(shù) 對(duì)任意 都成立,得 .

因?yàn)?/span> ,

所以 .

所以 ,

設(shè)

所以

由于 ,令 ,得.

當(dāng)時(shí), , 單調(diào)遞增;

當(dāng))時(shí), , 單調(diào)遞減.

所以,即, 時(shí), 的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點(diǎn),F(xiàn)是側(cè)面BCC1B1內(nèi)的動(dòng)點(diǎn),且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構(gòu)成的集合是(
A.{t| }
B.{t| ≤t≤2}
C.{t|2 }
D.{t|2 }

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)離心率為 的橢圓 的左、右焦點(diǎn)為 , 點(diǎn)PE上一點(diǎn), , 內(nèi)切圓的半徑為 .

(1)E的方程;

(2)矩形ABCD的兩頂點(diǎn)C、D在直線,AB在橢圓E,若矩形ABCD的周長(zhǎng)為 , 求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如下的統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0


(1)畫(huà)出散點(diǎn)圖并判斷是否線性相關(guān);
(2)如果線性相關(guān),求線性回歸方程;
(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x3+bx2+cx,其導(dǎo)函數(shù)y=f′(x)的圖象(如圖所示)經(jīng)過(guò)點(diǎn)(1,0),(2,0). (Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)﹣m=0恰有2個(gè)根,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如圖所示.

成績(jī)分組

頻數(shù)

頻率

(160,165]

5

0.05

(165,170]

0.35

(170,175]

30

(175,180]

20

0.20

(180,185]

10

0.10

合計(jì)

100

1


(1)請(qǐng)先求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù),再畫(huà)出頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生接受A考官的面試,求第四組至少有一名學(xué)生被考官A面試的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)Ox、Oy是平面內(nèi)相交成45°角的兩條數(shù)軸, 、 分別是x軸、y軸正方向同向的單位向量,若向量 =x +y ,則把有序數(shù)對(duì)(x,y)叫做向量 在坐標(biāo)系xOy中的坐標(biāo),在此坐標(biāo)系下,假設(shè) =(﹣2,2 ), =(2,0), =(5,﹣3 ),則下列命題不正確的是(
A. =(1,0)
B.| |=2
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形, , 平面, , , 中點(diǎn).

I)求證:直線平面

II)求證:直線平面

III)在上是否存在一點(diǎn),使得二面角的大小為,若存在,確定的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若存在實(shí)常數(shù),使得函數(shù)對(duì)其定義域上的任意實(shí)數(shù)分別滿足: ,則稱直線隔離直線.已知, 為自然對(duì)數(shù)的底數(shù))

1)求的極值;

2)函數(shù)是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案