【題目】某高校在2012年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如圖所示.
成績分組 | 頻數(shù) | 頻率 |
(160,165] | 5 | 0.05 |
(165,170] | ① | 0.35 |
(170,175] | 30 | ② |
(175,180] | 20 | 0.20 |
(180,185] | 10 | 0.10 |
合計 | 100 | 1 |
(1)請先求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù),再畫出頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,該高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在6名學(xué)生中隨機抽取2名學(xué)生接受A考官的面試,求第四組至少有一名學(xué)生被考官A面試的概率?
【答案】
(1)解:①位置上的數(shù)據(jù)為 =35,②位置上的數(shù)據(jù)為 =0.3;
頻率分布直方圖如右圖
(2)解:6× ≈2.47,6× ≈2.11,6× ≈1.41.
故第3、4、5組每組各抽取3,2,1名學(xué)生進入第二輪面試.
(3)解:其概率模型為古典概型,
設(shè)第3、4、5組抽取的學(xué)生分別為:a,b,c,1,2,m.
則其所有的基本事件有:
(a,b),(a,c),(a,1),(a,2),(a,m),
(b,c),(b,1),(b,2),(b,m),
(c,1),(c,2),(c,m),
(1,2),(1,m),
(2,m).
共有15個,符合條件的有9個;
故概率為 =0.6.
【解析】(1)由頻率= 可求其數(shù)據(jù),頻率分布直方圖時注意縱軸;(2)用分層抽樣的方法獲取樣本中的比例;(3)用古典概型求概率.
【考點精析】掌握頻率分布表是解答本題的根本,需要知道第一步,求極差;第二步,決定組距與組數(shù);第三步,確定分點,將數(shù)據(jù)分組;第四步,列頻率分布表.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對一批產(chǎn)品的長度(單位:mm)進行抽樣檢測,下圖為檢測結(jié)果的頻率分布直方圖.根據(jù)標準,產(chǎn)品長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.用頻率估計概率,現(xiàn)從該批產(chǎn)品中隨機抽取一件,則其為二等品的概率為( )
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.
(I)若A,B兩點的縱會標分別為 的值;
(II)已知點C是單位圓上的一點,且 的夾角θ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,其中 (為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若函數(shù)對任意都成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,下列說法正確的是( )
A.函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對稱
B.函數(shù)f(x)的圖象關(guān)于點(﹣ ,0)對稱
C.若方程f(x)=m在[﹣ ,0]上有兩個不相等的實數(shù)根,則實數(shù)m∈(﹣2,﹣ ]
D.將函數(shù)f(x)的圖象向左平移 個單位可得到一個偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場柜臺銷售某種產(chǎn)品,每件產(chǎn)品的成本為10元,并且每件產(chǎn)品需向該商場交a元(3≤a≤7)的管理費,預(yù)計當(dāng)每件產(chǎn)品的售價為x元(20≤x≤25)時,一天的銷售量為(x﹣30)2件. (Ⅰ)求該柜臺一天的利潤f(x)(元)與每件產(chǎn)品的售價x的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的售價為多少元時,該柜臺一天的利潤f(x)最大,并求出f(x)的最大值g(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),當(dāng)x>0時有2f(x)+xf′(x)>x2 , 則不等式(x+2014)2f(x+2014)+4f(﹣2)<0的解集為( )
A.(﹣∞,﹣2012)
B.(﹣2016,﹣2012)
C.(﹣∞,﹣2016)
D.(﹣2016,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于的不等式在上恒成立,求的取值范圍;
(2)設(shè)函數(shù),若在上有兩個不同極值點,求的取值范圍,并判斷極值的正負.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com