【題目】如圖,在四棱錐中,底面是菱形, , 平面, , , , 是中點(diǎn).
(I)求證:直線(xiàn)平面.
(II)求證:直線(xiàn)平面.
(III)在上是否存在一點(diǎn),使得二面角的大小為,若存在,確定的位置,若不存在,說(shuō)明理由.
【答案】(I)見(jiàn)解析;(Ⅱ)見(jiàn)解析(III)與重合.點(diǎn)的位置為所求.
【解析】試題分析:(I)結(jié)合條件中給出的線(xiàn)段間的長(zhǎng)度關(guān)系,在上取點(diǎn),使,證明四邊形為平行四邊形,可得,故可得結(jié)論;(II)結(jié)合圖形分析可得只需證, ,便可得到平面;(III)建立空間直角坐標(biāo)系,用向量法通過(guò)計(jì)算進(jìn)行判斷可得結(jié)果。
試題解析:
證明:(I)在上取點(diǎn),使,連接, ,
因?yàn)?/span>, ,
所以,且,
因?yàn)?/span>, ,
所以,且,
所以四邊形為平行四邊形,
所以,
又平面, 平面,
所以平面
(Ⅱ)因?yàn)?/span>是中點(diǎn),底面是菱形, ,
所以,
因?yàn)?/span>,
所以,
所以.
又平面,
所以
又
所以直線(xiàn)平面
(III)由(Ⅱ)可知, , ,相互垂直,以為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系D-xyz.
則, , ,
假設(shè)存在點(diǎn)G滿(mǎn)足條件,其坐標(biāo)為
設(shè)平面的一個(gè)法向量為,
由,得 ,
令,則
同理可得平面的法向量,
由題意得
,
解得
所以點(diǎn)。
所以當(dāng)點(diǎn)與點(diǎn)重合時(shí),二面角的大小為.
因此點(diǎn)為所求的點(diǎn)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市為了解顧客的購(gòu)物量及結(jié)算時(shí)間等信息,安排一名員工隨機(jī)收集了在該超市購(gòu)物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.
一次購(gòu)物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | x | 30 | 25 | y | 10 |
結(jié)算時(shí)間(分鐘/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知這100位顧客中一次購(gòu)物量超過(guò)8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購(gòu)物的結(jié)算時(shí)間X的分布列與數(shù)學(xué)期望;
(Ⅱ)若某顧客到達(dá)收銀臺(tái)時(shí)前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨(dú)立,求該顧客結(jié)算前的等候時(shí)間不超過(guò)2.5分鐘的概率.
(注:將頻率視為概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,其中 (為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)的單調(diào)性,并寫(xiě)出相應(yīng)的單調(diào)區(qū)間;
(Ⅱ)設(shè),若函數(shù)對(duì)任意都成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)柜臺(tái)銷(xiāo)售某種產(chǎn)品,每件產(chǎn)品的成本為10元,并且每件產(chǎn)品需向該商場(chǎng)交a元(3≤a≤7)的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元(20≤x≤25)時(shí),一天的銷(xiāo)售量為(x﹣30)2件. (Ⅰ)求該柜臺(tái)一天的利潤(rùn)f(x)(元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系式;
(Ⅱ)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該柜臺(tái)一天的利潤(rùn)f(x)最大,并求出f(x)的最大值g(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= cos(2x﹣ ).
(1)若sinθ=﹣ ,θ∈( ,2π),求f(θ+ )的值;
(2)若x∈[ , ],求函數(shù)f(x)的單調(diào)減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),當(dāng)x>0時(shí)有2f(x)+xf′(x)>x2 , 則不等式(x+2014)2f(x+2014)+4f(﹣2)<0的解集為( )
A.(﹣∞,﹣2012)
B.(﹣2016,﹣2012)
C.(﹣∞,﹣2016)
D.(﹣2016,0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知對(duì)任意平面向量 =(x,y),把 繞其起點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)θ得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(2,3),點(diǎn)B(2+2 ,1).把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn) 角得到點(diǎn)P,求點(diǎn)P的坐標(biāo).
(2)設(shè)平面內(nèi)曲線(xiàn)C上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿順時(shí)針?lè)较蛐D(zhuǎn) 后得到的點(diǎn)的軌跡方程是曲線(xiàn)y= ,求原來(lái)曲線(xiàn)C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0, )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間和對(duì)稱(chēng)中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com