(本小題滿分14分)
設橢圓()的兩個焦點是和(),且橢圓與圓有公共點.
(1)求的取值范圍;
(2)若橢圓上的點到焦點的最短距離為,求橢圓的方程;
(3)對(2)中的橢圓,直線()與交于不同的兩點、,若線段的垂直平分線恒過點,求實數(shù)的取值范圍.
(1)(2)(3)
【解析】
試題分析:解:(1)由已知,,
∴方程組有實數(shù)解,從而,故 …2分
所以,即的取值范圍是. ……………4分
(2)設橢圓上的點到一個焦點的距離為,
則
(). ……………6分
∵,∴當時,,
于是,,解得 .
∴所求橢圓方程為. ……………8分
(3)由得 (*)
∵直線與橢圓交于不同兩點, ∴△,即.① ………10分
設、,則、是方程(*)的兩個實數(shù)解,
∴,∴線段的中點為,
又∵線段的垂直平分線恒過點,∴,
即,即(k)② ……………12分
由①,②得,,又由②得,
∴實數(shù)的取值范圍是. ……………14分
考點:橢圓的方程和性質(zhì);直線的方程;兩直線垂直的判定定理。
點評:本題第一小題也可這樣來求解,橢圓跟y軸正半軸的交點為,若橢圓要與圓相交,則;第二小題可以結(jié)合橢圓的特點來求,當橢圓上的點是時,它到附近的焦點的距離就是最短距離;第三小題需要注意直線與橢圓相交時應滿足的條件。
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com