【題目】已知a,b,c為正數(shù),f(x)=|x+a|+|x+b|+|x﹣c|.
(1)若a=b=c=1,求函數(shù)f(x)的最小值;
(2)若f(0)=1且a,b,c不全相等,求證:b3c+c3a+a3b>abc.
【答案】(1)最小值2(2)證明見解析
【解析】
(1)法1:去絕對值,化為分段函數(shù),求出最值,
法2:根據(jù)絕對值三角不等式,求出最值,
(2)法1:根據(jù)基本不等式即可證明,
法2:根據(jù)柯西不等式即可證明.
(1)因?yàn)?/span>a=b=c=1,
所以f(x)=|x+a|+|x+b|+|x﹣c|=2|x+1|+|x﹣1|,
法1:由上可得:
所以,當(dāng)x=﹣1時(shí),函數(shù)f(x)的最小值為2;
法2:f(x)=|x+a|+|x+b|+|x﹣c|=|x+1|+|x+1|+|x﹣1|≥|x+1|+|x+1﹣x+1|=2+|x+1|≥2,
當(dāng)且僅當(dāng),即x=﹣1時(shí)取得最小值2;
(2)因?yàn)?/span>a,b,c為正數(shù),所以要證b3c+c3a+a3b.,
即證明就行了,
法1:因?yàn)?/span>2222(a+b+c),當(dāng)且僅當(dāng)a=b=c時(shí)取等號(hào).
又因?yàn)?/span>f(0)=1即a+b+c=1且a,b,c不全相等,
所以,
即b3c+c3a+a3b,
法2:因?yàn)椋?/span>a+b+c),當(dāng)且僅當(dāng)取等號(hào),
又因?yàn)?/span>f(0)=1即a+b+c=1且a,b,c不全相等,
所以,
即b3c+c3a+a3b.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點(diǎn)P到底面ABCD的距離為2,E是線段PD上一點(diǎn),且PB∥平面ACE,求四面體A-CDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知多面體PABCDE的底面ABCD是邊長為2的菱形,底面ABCD,,且.
(1)證明:平面平面;
(2)若,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐S-ABCD中,底面ABCD是邊長為2的菱形,,,二面角S-BD-C的余弦值為.
(I)證明:平面平面SBD;
(Ⅱ)求二面角A-SD-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖象如圖所示
(1)求的最小正周期及解析式;
(2)設(shè)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐的頂點(diǎn)為A,高和底面的半徑相等,BE是底面圓的一條直徑,點(diǎn)D為底面圓周上的一點(diǎn),且∠ABD=60°,則異面直線AB與DE所成角的正弦值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市在進(jìn)行創(chuàng)建文明城市的活動(dòng)中,為了解居民對“創(chuàng)建文明城”的滿意程度,組織居民給活動(dòng)打分(分?jǐn)?shù)為整數(shù),滿分100分),從中隨機(jī)抽取一個(gè)容量為120的樣本,發(fā)現(xiàn)所給數(shù)據(jù)均在[40,100]內(nèi).現(xiàn)將這些分?jǐn)?shù)分成以下6組并畫出樣本的頻率分布直方圖,但不小心污損了部分圖形,如圖所示.觀察圖形則下列說法中有錯(cuò)誤的是( )
A.第三組的頻數(shù)為18人
B.根據(jù)頻率分布直方圖估計(jì)眾數(shù)為75分
C.根據(jù)頻率分布直方圖估計(jì)樣本的平均數(shù)為75分
D.根據(jù)頻率分布直方圖估計(jì)樣本的中位數(shù)為75分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果對某對象連續(xù)實(shí)施兩次變換后的結(jié)果就是變換前的對象,那么我們稱這種變換為“回歸”變換.如:對任意一個(gè)實(shí)數(shù),變換:取其相反數(shù).因?yàn)橄喾磾?shù)的相反數(shù)是它本身,所以變換“取實(shí)數(shù)的相反數(shù)”是一種“回歸”變換.有下列3種變換:
①對,變換:求集合A的補(bǔ)集;
②對任意,變換:求z的共軛復(fù)數(shù);
③對任意,變換:(k,b均為非零實(shí)數(shù)).
其中是“回歸”變換的是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com