【題目】如圖,四棱錐PABCD中,AB=AD=2BC=2BCAD,ABAD,△PBD為正三角形.且PA=2

1)證明:平面PAB⊥平面PBC

2)若點P到底面ABCD的距離為2,E是線段PD上一點,且PB∥平面ACE,求四面體A-CDE的體積.

【答案】(1)見解析;(2)

【解析】

1)證明ABPB,ABBC,推出AB⊥平面PBC,然后即可證明平面PAB⊥平面PBC

2)設BD,AC交于點O,連接OE,點P到平面ABCD的距離為2,點E到平面ABCD的距離為h==,通過VA-CDE=VE-CDA,轉化求解四面體A-CDE的體積.

1,且,,

為正三角形,,又,,

,又,,,

平面,又平面,

平面平面

2)如圖,設,交于點,,

,,連接

平面,,則,

又點到平面的距離為2,

到平面的距離為

,

即四面體的體積為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)a0a1)是R上的單調函數(shù),則a的取值范圍是(

A. (0,] B. [ C. [] D. ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,則方程所有根的和等于(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是橢圓上不同的兩點,的中點坐標為

1)證明:直線經(jīng)過橢圓的右焦點.

2)設直線不經(jīng)過點且與橢圓相交于兩點,若直線與直線的斜率的和為1,試判斷直線是否經(jīng)過定點,若經(jīng)過定點,請求出該定點;若不經(jīng)過定點,請給出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓,如圖,分別交軸正半軸于點.射線分別交于點,動點滿足直線軸垂直,直線軸垂直.

1)求動點的軌跡的方程;

2)過點作直線交曲線與點,射線與點,且交曲線于點.問:的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,錯誤命題是

A. ,則的逆命題為真

B. 線性回歸直線必過樣本點的中心

C. 在平面直角坐標系中到點的距離的和為的點的軌跡為橢圓

D. 在銳角中,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程為,直線,直線.以極點為原點,極軸為軸的正半軸建立平面直角坐標系.

1)求直線,的直角坐標方程以及曲線的參數(shù)方程;

2)已知直線與曲線交于,兩點,直線與曲線C交于,兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)討論在區(qū)間上的單調性;

2)若時,,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知ab,c為正數(shù),fx)=|x+a|+|x+b|+|xc|.

1)若abc1,求函數(shù)fx)的最小值;

2)若f0)=1a,b,c不全相等,求證:b3c+c3a+a3babc.

查看答案和解析>>

同步練習冊答案