如圖所示,有一農(nóng)民在自留地建造一個長10 m,深0.5 m,橫截面為等腰梯形的封閉式引水槽側(cè)面材料每平方米造價50元,頂蓋材料每平方米造價10元.
(1)把建立引水槽的費用y(元)表示為引水槽的側(cè)面與地面所成的角∠DAE=θ的函數(shù);
(2)引水槽的側(cè)面與地面所成的角θ多大時,其材料費最低?最低材料費是多少?(精確到0.01,≈1.732)
(3)按照題沒條件,在引水槽的深度和橫截面積及所在的材料不改變的情況下,將引水槽的橫截面形狀改變?yōu)檎叫螘r的材料費與(2)中所求得的材料費相比較,哪一種設(shè)計所用材料費更省?省多少?
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)復(fù)數(shù)Z滿足(Z+i)·Z=1-2i3,則復(fù)數(shù)Z對應(yīng)的點位于復(fù)平面內(nèi) ( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=ax3+bx2+cx,其導(dǎo)函數(shù)y=f′(x)的圖象經(jīng)過點(1,0),(2,0),如圖所示,則下列說法中不正確的是________.
①當(dāng)x=時,函數(shù)f(x)取得極小值;②f(x)有兩個極值點;③當(dāng)x=2時,函數(shù)f(x)取得極小值;④當(dāng)x=1時,函數(shù)f(x)取得極大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)=xsinx(x∈R)
(1)證明f(x+2kπ)f(x)=2kπsinx.其中k∈Z;
(2)設(shè)x0是f(x)的一個極值點.證明[f(x0)]2=;
(3)設(shè)f(x)在(0,+∞)的全部極值點按從小到大的順序a1,a2,…,an,…,證明:<an+1-an<π.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{log2(an-1)}(n∈N*) 為等差數(shù)列,且a1=3,a2=5,則
= ( )
A.2 B. C.1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知un=an-1b+an-2b2+…+abn-1+bn(n∈N*,a>0,b>0).
(Ⅰ)當(dāng)a=b時,求數(shù)列{un}的前項n項和Sn。
(Ⅱ)求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
自然狀態(tài)下的魚類是一種可再生資源,為持續(xù)利用這一資源,需從宏觀上考察其再生能力及捕撈強度對魚群總量的影響. 用xn表示某魚群在第n年年初的總量,n∈N*,且x1>0.不考慮其它因素,設(shè)在第n年內(nèi)魚群的繁殖量及捕撈量都與xn成正比,死亡量與xn2成正比,這些比例系數(shù)依次為正常數(shù)a,b,c.
(Ⅰ)求xn+1與xn的關(guān)系式;
(Ⅱ)猜測:當(dāng)且僅當(dāng)x1,a,b,c滿足什么條件時,每年年初魚群的總量保持不變?(不要求證明)
(Ⅲ)設(shè)a=2,b=1,為保證對任意x1∈(0,2),都有xn>0,n∈N*,則捕撈強度b的最大允許值是多少?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB于點F.
(1)證明:PA//平面EDB;
(2)證明:BP⊥平面EFD;
(3)求二面角C—PD—D的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com