設(shè)x、y都是正數(shù),且
+
=3,則2x+y的最小值
.
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:由題意可得x、y都是正數(shù),
+
=1,故2x+y=(2x+y)(
+
),再利用基本不等式求得它的最小值.
解答:
解:由題意可得x、y都是正數(shù),
+
=1,
∴2x+y=(2x+y)(
+
)=
+
+
≥
+2
=
,
當(dāng)且僅當(dāng)
=
時(shí),取等號(hào),故2x+y的最小值為
,
故答案為:
.
點(diǎn)評(píng):本題主要考查基本不等式的應(yīng)用,注意檢驗(yàn)等號(hào)成立的條件,式子的變形是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
袋中有6個(gè)大小相同的小球,其中1個(gè)黑球,2個(gè)白球,3個(gè)紅球,現(xiàn)從袋中一次摸出2個(gè)小球.
(Ⅰ)求摸出的兩個(gè)小球異色的概率;
(Ⅱ)求至少摸出一個(gè)白球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)集合M={0,1,2,3,4},N={0,1,3},則∁MN=( 。
A、{0,1,2} |
B、{0,2,4} |
C、{2,4} |
D、{3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=alnx+
x
2-(a+1)x,a>0.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)y=f(x)+
a
2+3a的圖象與x軸有3個(gè)不同的交點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知命題p:a∈{a|2a+1>5},命題q:a∈{a|a2-2a-3≤0},若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且acosC-
c=b.
(Ⅰ)求角A的大小;
(Ⅱ)若|
+
|=2,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)y=
sin2x+cos2x+
(x∈R).
(Ⅰ)求函數(shù)y的最大值及y取最大值時(shí)x的集合;
(Ⅱ)求函數(shù)y的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在△ABC中,若BC=
,AC=2,B=
,則角A的大小為
.
查看答案和解析>>