【題目】某投資人欲將5百萬元資金投人甲、乙兩種理財產(chǎn)品,根據(jù)銀行預(yù)測,甲、乙兩種理財產(chǎn)品的收益與投入資金的關(guān)系式分別為,,其中為常數(shù)且.設(shè)對乙種產(chǎn)品投入資金百萬元.
(Ⅰ)當(dāng)時,如何進(jìn)行投資才能使得總收益最大;(總收益)
(Ⅱ)銀行為了吸儲,考慮到投資人的收益,無論投資人資金如何分配,要使得總收益不低于0.45百萬元,求的取值范圍.
【答案】(Ⅰ)甲種產(chǎn)品投資4百萬元,乙種產(chǎn)品投資1百萬元時,總收益最大(Ⅱ)
【解析】
(Ⅰ)當(dāng)時求出總收益的解析式,結(jié)合一元二次函數(shù)最值性質(zhì)進(jìn)行求解即可.
(Ⅱ)根據(jù)題意可知對任意恒成立,將問題轉(zhuǎn)化為即對任意恒成立,再利用換元法轉(zhuǎn)化為一元二次不等式恒成立求解.
(Ⅰ)設(shè)對乙種產(chǎn)品投入資金百萬元,則對甲種產(chǎn)品投入資金百萬元
當(dāng)時,,
令,則,
,其圖象的對稱軸,
∴當(dāng)時,總收益有最大值,此時,.
即甲種產(chǎn)品投資4百萬元,乙種產(chǎn)品投資1百萬元時,總收益最大
(Ⅱ)由題意知對任意恒成立,
即對任意恒成立,
令,
設(shè),則,
則,其圖象的對稱軸為,
①當(dāng),即時,在單調(diào)遞增,在單調(diào)遞減,
且,
∴,得,又,
∴,
②當(dāng),即時,在單調(diào)遞增,在單調(diào)遞減,
且,可得,符合題意,
∴
③當(dāng),即時,易知在單調(diào)遞增,
可得恒成立,,
綜上可得.
∴實數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量且函數(shù),若函數(shù)f(x)的圖象上兩個相鄰的對稱軸距離為.
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向左平移個單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的表達(dá)式并其對稱軸;
(3)若方程f(x)=m(m>0)在時,有兩個不同實數(shù)根x1,x2,求實數(shù)m的取值范圍,并求出x1+x2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)導(dǎo)師計劃從自己所培養(yǎng)的研究生甲、乙兩人中選一人,參加雄安新區(qū)某部門組織的計算機(jī)技能大賽,兩人以往5次的比賽成績統(tǒng)計如下:(滿分100分,單位:分).
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績 | 87 | 87 | 84 | 100 | 92 |
乙的成績 | 100 | 80 | 85 | 95 | 90 |
(1)試比較甲、乙二人誰的成績更穩(wěn)定;
(2)在一次考試中若兩人成績之差的絕對值不大于2,則稱兩人“實力相當(dāng)”.若從上述5次成績中任意抽取2次,求恰有一次兩人“實力相當(dāng)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某污水處理廠要在個矩形ABCD的池底水平鋪設(shè)污水凈化管道(,E是直角頂點(diǎn))來處理污水,管道越長,污水凈化效果越好,設(shè)計要求管道的接口E是AB的中點(diǎn),F、G分別落在AD、BC上,且,,設(shè).
(1)試將污水管道的長度l表示成的函數(shù),并寫出定義域;
(2)當(dāng)為何值時,污水凈化效果最好,并求此時管道的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)為橢圓上任一點(diǎn), 為其右焦點(diǎn), 是橢圓的左、右頂點(diǎn),點(diǎn)滿足.
①證明: 為定值;
②設(shè)是直線上的任一點(diǎn),直線分別另交橢圓于兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(–1,2),B(2,8)以及,=–13,求點(diǎn)C、D的坐標(biāo)和的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓和橢圓, 是橢圓的左焦點(diǎn).
(Ⅰ)求橢圓的離心率和點(diǎn)的坐標(biāo);
(Ⅱ)點(diǎn)在橢圓上,過作軸的垂線,交圓于點(diǎn)(不重合),是過點(diǎn)的圓的切線.圓的圓心為點(diǎn),半徑長為.試判斷直線與圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法的錯誤的是( )
A. 經(jīng)過定點(diǎn)的傾斜角不為的直線的方程都可以表示為
B. 經(jīng)過定點(diǎn)的傾斜角不為的直線的方程都可以表示為
C. 不經(jīng)過原點(diǎn)的直線的方程都可以表示為
D. 經(jīng)過任意兩個不同的點(diǎn)、直線的方程都可以表示為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com