【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號(hào)t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

,

【答案】(1);(2)在2007至2013年該地區(qū)農(nóng)村居民家庭人均純收入在逐年增加,平均每年增加千元;元.

【解析】試題本題第(1)問(wèn),由給出的公式求出,從而求出回歸直線方程;對(duì)第(2)問(wèn),由第(1)問(wèn)求出的回歸直線方程進(jìn)行預(yù)測(cè),令,可得的近似值.

試題解析:(1)由題意知,,,所以=

所以==,所以線性回歸方程為。

(2)(1)中的線性回歸方程可知,,所以在2007至2013年該地區(qū)農(nóng)村居民家庭人均純收入在逐年增加,平均每年增加千元.

得:,故預(yù)測(cè)該地區(qū)在2015年農(nóng)村居民家庭人均純收入為元。

【易錯(cuò)點(diǎn)】本題的易錯(cuò)點(diǎn)是第(1)問(wèn)計(jì)算錯(cuò)誤,第(2)問(wèn)在2007至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,不知道如何回答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)處取得極大值或極小值,則稱為函數(shù)的極值點(diǎn).

設(shè)函數(shù),

(1)若有兩個(gè)極值點(diǎn)且滿足,的值及的取值范圍;

(2)若處的切線與的圖象有且只有一個(gè)公共點(diǎn),求的值;

(3),且對(duì)滿足“函數(shù)的圖象總有三個(gè)交點(diǎn)”的任意實(shí)數(shù),都有成立,求滿足的條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2.5cos(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示,M、N兩點(diǎn)之間的距離為13,且f(3)=0,若將函數(shù)f(x)的圖象向右平移t(t>0)個(gè)單位長(zhǎng)度后所得函數(shù)的圖象關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則t的最小值為(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在等腰梯形ABCD中,AD∥BC,AD=CD=AB,∠ABC=60°,將三角形ABD沿BD折起,使點(diǎn)A在平面BCD上的投影G落在BD上.
(1)求證:平面ACD⊥平面ABD;
(2)求二面角G﹣AC﹣D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐的表面積是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是( )

A. 命題x24x30,則x3”的逆否命題是:x≠3,則x24x3≠0”

B. “x>1”“|x|>0”的充分不必要條件

C. pq為假命題,則pq均為假命題

D. 命題p“x0∈R使得x01<0”,則p“x∈R,均有x2x1≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實(shí)數(shù)m的最大值;
(2)當(dāng)a< 時(shí),函數(shù)g(x)=f(x)+|2x﹣1|有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案