數(shù)23有可能是數(shù)列3,5,7,9,11,…中的第( 。╉(xiàng).
A、10B、11C、12D、13
考點(diǎn):數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:由數(shù)列3,5,7,9,11,…可得一個通項(xiàng)公式an=3+(n-1)×2=2n+1,令2n+1=23,解得n即可.
解答: 解:由數(shù)列3,5,7,9,11,…可得一個通項(xiàng)公式an=3+(n-1)×2=2n+1,
令2n+1=23,解得n=11.
∴數(shù)23有可能是數(shù)列3,5,7,9,11,…中的第11項(xiàng).
故選:B.
點(diǎn)評:本題考查了數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P關(guān)于x的不等式:x2+(
1
x
2<2a,(x≠0)的解集為空集,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(lnx+mx)有兩個極值點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程(m+2)x+(m-1)y-3=0(m∈R)所表示的直線恒過定點(diǎn)(  )
A、(1,-1)
B、(-2,1)
C、(1,-2)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:方程
x2
k-4
+
y2
k-6
=1表示雙曲線,q:點(diǎn) M(2,1)是橢圓
x2
5
+
y2
k
=1內(nèi)一點(diǎn),若p∧q為真命題,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈{1,3,x2},則實(shí)數(shù)x∈
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(0,π),cosα=-
4
5
,則tan(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanA與tan(-A+
π
4
)是方程x2+px+q=0的兩個根,若3tanA=2tan(
π
4
-A
),則p+q的值為( 。
A、6
B、11
C、-
2
3
D、-
2
3
或11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<a<b,m>0,求證:
a+m
b+m
a
b

查看答案和解析>>

同步練習(xí)冊答案