如圖,已知ABCD是正方形;P是平面ABCD外一點(diǎn),且PA⊥面ABCD,PA=AB=3.求:
(1)二面角P-CD-A的大。
(2)三棱錐P-ABD的體積.
考點(diǎn):棱柱、棱錐、棱臺的體積,異面直線及其所成的角
專題:空間位置關(guān)系與距離
分析:(1)連結(jié)AC,BD,由正方形性質(zhì)得AC⊥BD,由線面垂直得BD⊥PA,從而BD⊥平面PAC,由此能求出BD與PC的夾角為90°.
(2)由已知條件得PA是三棱錐P-ABD的高,由此能求出三棱錐P-ABD的體積.
解答: 解:(1)連結(jié)AC,BD,
∵ABCD是正方形,∴AC⊥BD,
∵PA⊥面ABCD,BD?平面ABCD,
∴BD⊥PA,
∵AC∩PA=A,
∴BD⊥平面PAC,
∵PC?平面PAC,∴BD⊥PC,
∴BD與PC的夾角為90°.
(2)∵ABCD是正方形,P是平面ABCD外一點(diǎn),
且PA⊥面ABCD,PA=AB=3,
∴三棱錐P-ABD的體積:
V=
1
3
×S△ABD×PA

=
1
3
×
1
2
×3×3×3

=
9
2
點(diǎn)評:本題考查異面直線的夾角的求法,考查三棱錐的體積的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線y=kx-2與拋物線y2=6x交于A、B兩點(diǎn),且線段AB的中點(diǎn)的縱坐標(biāo)為3,則k的值是( 。
A、1B、-2
C、1或-2D、以上都不是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B、“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件
C、“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
D、命題p:“?x∈R,sinx+cosx≤
2
”,則¬p是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列x1,x2,x3,…,x11的公差為
10
2
,隨機(jī)變量ξ等可能地取x1,x2,x3,…,x11,則ξ的標(biāo)準(zhǔn)差為( 。
A、
15
11
11
B、
10
C、5
D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:f(x)=x2+1在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,且(2a+c)cosB=-bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2
3
,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)fn(x)=2anx3-3an+1x2+6x+1,an>0,a1=1,若fn(x)有兩個(gè)極值點(diǎn)αn、βn,且滿足αnn=2nαnβn,其中n=1,2….
(1)試用an表示an+1;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若Tn1β12β2+…+αnβn,證明:對一切n∈N*,均有1≤Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1的底面是正三角形,點(diǎn)M、N分別是A1C1和A1B1的中點(diǎn),AA1=AB=BM=2,∠A1AB=60°.
(Ⅰ)求證:BN⊥平面A1B1C1
(Ⅱ)求二面角A1-AB-M的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=2,BC=
3
,E、F、G分別是AB、A1B1、A1C1的中點(diǎn),求證:
①B、C、F、G四點(diǎn)共面
②求異面直線CE與FG所成的角.

查看答案和解析>>

同步練習(xí)冊答案