三數(shù)值m=0.23,n=30.2,p=log30.2的大小關(guān)系是( 。
A、n<p<m
B、m<p<n
C、p<m<n
D、p<n<m
考點(diǎn):對(duì)數(shù)值大小的比較
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性求解.
解答: 解:∵0<m=0.23<0.2,
n=30.2>30=1,
p=log30.2<log31=0,
∴p<m<n.
故選:C.
點(diǎn)評(píng):本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

落在平靜水面上的石頭,使水面產(chǎn)生同心圓形波紋,在持續(xù)的一段時(shí)何內(nèi),若外圍圈波的半徑r(單位:m)與時(shí)間t(單位:s)的函數(shù)關(guān)系是r=8t.則在2s末,擾動(dòng)水面面積的變化率為(  )
A、72πm2/s
B、144πm2/s
C、256πm2/s
D、512πm2/s

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用秦九韶算法求多項(xiàng)式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4的值時(shí),若v0=3,v1=-7,則v4的值為( 。
A、-57B、124
C、-845D、220

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將奇函數(shù)f(x)=Asin(ωx+φ)(A≠0,ω>0,-
π
2
<φ<
π
2
)的圖象向左平移
π
6
個(gè)單位得到的圖象關(guān)于原點(diǎn)對(duì)稱,則ω的值可以為( 。
A、2B、6C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,若
3
是3a與3b的等比中項(xiàng),則
1
a
+
1
b
的最小值( 。
A、2
B、
1
4
C、4
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x∈C,且|
 
i
x
 
 
i-1
i+1
|=0(i為虛數(shù)單位),則x=( 。
A、1B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin2x+eln|x|的圖象的大致形狀是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)m為何值時(shí),方程2x2+4mx+3m-1=0有兩個(gè)負(fù)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

成都外國語學(xué)校開設(shè)了甲,乙,丙三門選修課,學(xué)生對(duì)每門均可選或不選,且選哪門課程互不影響.已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率為0.12,至少選修一門的概率為0.88,用ξ表示該學(xué)生選修課程的門數(shù),用η表示該學(xué)生選修課程門數(shù)和沒有選修課程門數(shù)的乘積.
(1)記“函數(shù)f(x)=x2+ηx為偶函數(shù)”為事件A,求事件A的概率;
(2)求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案