函數(shù)f(x)=sin2x+eln|x|的圖象的大致形狀是(  )
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)已知中函數(shù)的解析式,可得函數(shù)f(x)為非奇非偶函數(shù),其圖象不關(guān)于原點(diǎn)對(duì)稱(chēng),也不關(guān)于y軸對(duì)稱(chēng),可排除A,C,結(jié)合f(-
π
4
)<0,可排除D,得到答案.
解答: 解:∵f(x)=sin2x+eln|x|
∴f(-x)=-sin2x+eln|x|,
f(-x)與f(x)即不恒等,也不恒反,
故函數(shù)f(x)為非奇非偶函數(shù),其圖象不關(guān)于原點(diǎn)對(duì)稱(chēng),也不關(guān)于y軸對(duì)稱(chēng),
可排除A,C,
當(dāng)x=-
π
4
時(shí),f(-
π
4
)=-1+
π
4
<0,可排除D,
故選:B
點(diǎn)評(píng):本題主要考查函數(shù)的圖象特征,函數(shù)的奇偶性的判斷,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示程序框圖,輸出的結(jié)果是( 。
A、a,b中較大的值B、a,b兩個(gè)值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2c,且a2=c(c+a),F(xiàn),A分別是它的左焦點(diǎn)和右頂點(diǎn),B是短軸的一個(gè)端點(diǎn),則∠ABF等于( 。
A、60°B、75°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三數(shù)值m=0.23,n=30.2,p=log30.2的大小關(guān)系是( 。
A、n<p<m
B、m<p<n
C、p<m<n
D、p<n<m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P為拋物線y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線的準(zhǔn)線距離之和的最小值是( 。
A、5
B、8
C、
17
-1
D、
5
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2013年第三季度,國(guó)家電網(wǎng)決定對(duì)城鎮(zhèn)居民民用電計(jì)費(fèi)標(biāo)準(zhǔn)做出調(diào)整,并根據(jù)用電情況將居民分為三類(lèi):第一類(lèi)的用電區(qū)間在(0,170],第二類(lèi)在(170,260],第三類(lèi)在(260,+∞)(單位:千瓦時(shí)).某小區(qū)共有1000戶居民,現(xiàn)對(duì)他們的用電情況進(jìn)行調(diào)查,得到頻率分布直方圖如圖所示.
(1)求該小區(qū)居民用電量的平均數(shù);
(2)利用分層抽樣的方法從該小區(qū)內(nèi)選出10位居民代表,若從該10戶居民代表中任選兩戶居民,求這兩戶居民用電資費(fèi)屬于不同類(lèi)型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+alnx.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a=-1時(shí),過(guò)坐標(biāo)原點(diǎn)O作曲線y=f(x)的切線,設(shè)切點(diǎn)為P(m,n),求實(shí)數(shù)m的值;
(3)設(shè)定義在區(qū)間D上的函數(shù)y=g(x)在點(diǎn)P(x0,y0)處的切線方程為l:y=h(x),當(dāng)x≠x0時(shí),若
g(x)-h(x)
x-x0
>0在區(qū)間D內(nèi)恒成立,則稱(chēng)點(diǎn)P為函數(shù)y=g(x)的“轉(zhuǎn)點(diǎn)”.當(dāng)a=8時(shí),試問(wèn):函數(shù)y=f(x)是否存在“轉(zhuǎn)點(diǎn)”?若存在,請(qǐng)求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知底面為菱形的四棱錐P-ABCD中,△ABC是邊長(zhǎng)為2的正三角形,AP=BP=
2
2
,PC=
2

(1)求證:平面PAB⊥平面ABCD;
(2)(理科)求二面角A-PC-D的余弦值;
(文科)求三棱錐D-PAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2ax,把函數(shù)f(x)的圖象向左平移1個(gè)單位,得到函數(shù)y=g(x)的圖象.
(1)若g(x)為偶函數(shù),求實(shí)數(shù)a的值;
(2)若2f(x)-g(x)+2(x-a)>0對(duì)于x∈[1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案