用秦九韶算法求多項(xiàng)式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4的值時(shí),若v0=3,v1=-7,則v4的值為( 。
A、-57B、124
C、-845D、220
考點(diǎn):秦九韶算法
專(zhuān)題:概率與統(tǒng)計(jì)
分析:首先把一個(gè)n次多項(xiàng)式f(x)寫(xiě)成(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0]的形式,然后化簡(jiǎn),求n次多項(xiàng)式f(x)的值就轉(zhuǎn)化為求n個(gè)一次多項(xiàng)式的值,求出V4的值.
解答: 解:∵f(x)=12+35x-8x2+79x3+6x4+5x5+3x6
=(((((3x+5)x+6)x+79)x-8)x+35)x+12,
∴v0=a6=3,
v1=v0x+a5=3×(-4)+5=-7,
v2=v1x+a4=-7×(-4)+6=34,
v3=v2x+a3=34×(-4)+79=-57,
v4=v3x+a2=-57×(-4)+(-8)=220.
故選:D.
點(diǎn)評(píng):本題考查通過(guò)程序框圖解決實(shí)際問(wèn)題,把實(shí)際問(wèn)題通過(guò)數(shù)學(xué)上的算法,寫(xiě)成程序,然后求解,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知loga4>loga3,那么底數(shù)a的取值范圍是(  )
A、0<a<1B、a>1
C、a<1D、a>0且a≠1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示程序框圖,輸出的結(jié)果是( 。
A、a,b中較大的值B、a,b兩個(gè)值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

因?yàn)闊o(wú)理數(shù)是無(wú)限小數(shù),而π是無(wú)理數(shù),所以π是無(wú)限小數(shù).屬于哪種推理( 。
A、合情推理B、類(lèi)比推理
C、演繹推理D、歸納推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=x3-x+1在x=1處的切線方程是( 。
A、y=1B、y=x
C、y=2x-1D、y=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三角形的中心與三個(gè)頂點(diǎn)連線所成的三個(gè)張角相等,其余弦值為-
1
2
,類(lèi)似地正四面體的中心與四個(gè)頂點(diǎn)連線所成的四個(gè)張角也相等,其余弦值為(  )
A、-
1
2
B、-
1
3
C、-
1
4
D、-
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2c,且a2=c(c+a),F(xiàn),A分別是它的左焦點(diǎn)和右頂點(diǎn),B是短軸的一個(gè)端點(diǎn),則∠ABF等于( 。
A、60°B、75°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三數(shù)值m=0.23,n=30.2,p=log30.2的大小關(guān)系是( 。
A、n<p<m
B、m<p<n
C、p<m<n
D、p<n<m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知底面為菱形的四棱錐P-ABCD中,△ABC是邊長(zhǎng)為2的正三角形,AP=BP=
2
2
,PC=
2

(1)求證:平面PAB⊥平面ABCD;
(2)(理科)求二面角A-PC-D的余弦值;
(文科)求三棱錐D-PAC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案