某學(xué)校高三年級(jí)有學(xué)生1000名,經(jīng)調(diào)查研究,其中750名同學(xué)經(jīng)常參加體育鍛煉(稱(chēng)
為A類(lèi)同學(xué)),另外250名同學(xué)不經(jīng)常參加體育鍛煉(稱(chēng)為B類(lèi)同學(xué)),現(xiàn)用分層抽樣方法(按A類(lèi)、B類(lèi)分二層)從該年級(jí)的學(xué)生中抽查100名同學(xué).
(Ⅰ)求抽取的100名同學(xué)中,有多少名A 類(lèi)同學(xué)?
(Ⅱ)如果以身高達(dá)到170厘米作為達(dá)標(biāo)的標(biāo)準(zhǔn),對(duì)抽取的100名學(xué)生進(jìn)行統(tǒng)計(jì),得到2×2列聯(lián)表如下:
體育鍛煉與身高達(dá)標(biāo)2×2列聯(lián)表
身高達(dá)標(biāo)身高不達(dá)標(biāo)總計(jì)
積極參加體育鍛煉403575
不積極參加體育鍛煉101525
總計(jì)5050100
請(qǐng)問(wèn)是否有99%以上的把握認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系?.
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,
參考數(shù)據(jù):
P(K2≥k)0.250.150.100.050.0250.0100.001
k1.3232.0722.7063.8415.0246.63510.828
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專(zhuān)題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(Ⅰ)根據(jù)列聯(lián)表中的數(shù)據(jù),可得結(jié)論;
(Ⅱ)代入公式計(jì)算出k值,然后與臨界值比較即可得到答案.
解答: 解:(Ⅰ)根據(jù)列聯(lián)表中的數(shù)據(jù),可得75名A類(lèi)同學(xué).
(Ⅱ)因?yàn)?span id="wgeiu2y" class="MathJye">k2=
100(40×15-35×10)2
75×25×50×50
=1.333<6.635
所以沒(méi)有99%的把握認(rèn)為體育鍛煉與身高達(dá)標(biāo)有關(guān)系.
點(diǎn)評(píng):本題考查了列聯(lián)表,獨(dú)立性檢驗(yàn)的方法等知識(shí),考查了學(xué)生處理數(shù)據(jù)和運(yùn)算求解的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2-2ax+2.
(Ⅰ)若不等式f(x)>0在區(qū)間[2,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)解關(guān)于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知tanα=3,計(jì)算
4sinα-2cosα
5cosα+3sinα
 的值;
(2)已知f(α)=
sin(5π-α)•cos(α+
2
)•cos(π+α)
sin(α-
2
)•cos(α+
π
2
)•tan(α-3π)
化簡(jiǎn)f(α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)設(shè)f(α)=1-tanα•sin(α-2π)cosα,化簡(jiǎn)f(α);
(2)若角α=-
17π
4
,求f(α)式的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用0,1,2,3,4,5共6個(gè)數(shù)字,可以組成多少個(gè)
(1)沒(méi)有重復(fù)數(shù)字的六位奇數(shù)
(2)沒(méi)有重復(fù)數(shù)字的六位偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
3
sinx+cosx.
(1)將函數(shù)寫(xiě)成y=Asin(ωx+φ)的形式;
(2)當(dāng)函數(shù)的定義域?yàn)閇
π
2
3
]時(shí),求函數(shù)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如圖程序.(其中x滿(mǎn)足:0<x<12)程序:
(1)該程序用函數(shù)關(guān)系式怎樣表達(dá).
(2)畫(huà)出這個(gè)程序的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,Sn+1=4an+2,a1=1.
(1)設(shè)bn=an+1-2an,求證數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由y2=4x與直線y=2x-4所圍成圖形的面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案