【題目】某地為改善旅游環(huán)境進(jìn)行景點(diǎn)改造.如圖,將兩條平行觀光道l1l2通過一段拋物線形狀的棧道AB連通(道路不計(jì)寬度),l1l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點(diǎn),拋物線的對稱軸垂直于l3,且交l3M),在堤岸線l3上的E,F兩處建造建筑物,其中E,FM的距離為1(百米),且F恰在B的正對岸(即BFl3).

1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;

2)游客(視為點(diǎn)P)在棧道AB的何處時(shí),觀測EF的視角(EPF)最大?請?jiān)冢?/span>1)的坐標(biāo)系中,寫出觀測點(diǎn)P的坐標(biāo).

【答案】1)見解析,,x[01];(2P(,)時(shí),視角∠EPF最大.

【解析】

1)以A為原點(diǎn),l1x軸,拋物線的對稱軸為y軸建系,設(shè)出方程,通過點(diǎn)的坐標(biāo)可求方程;

2)設(shè)出的坐標(biāo),表示出,利用基本不等式求解的最大值,從而可得觀測點(diǎn)P的坐標(biāo).

1)以A為原點(diǎn),l1x軸,拋物線的對稱軸為y軸建系

由題意知:B(1,0.5),設(shè)拋物線方程為

代入點(diǎn)B得:p1,故方程為,x[01];

2)設(shè)P(),t[0,],作PQl3Q,記∠EPQ,∠FPQ

,

,則:

當(dāng)且僅當(dāng),即,即時(shí)取等號;

P()時(shí)視角∠EPF最大,

答:P()時(shí),視角∠EPF最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱中,,分別為,的中點(diǎn).

1)求證:平面

2)求平面與平面所成二面角銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面為正方形,側(cè)面為菱形,,平面平面.

1)求直線與平面所成角的正弦值;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,CDAB,,,,E的中點(diǎn).

1)求證:;

2)求P到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動時(shí),點(diǎn)的軌跡為曲線

(1)求曲線的方程;

(2)若直線與曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C:x24pyp為大于2的質(zhì)數(shù))的焦點(diǎn)為F,過點(diǎn)F且斜率為k(k0)的直線交CAB兩點(diǎn),線段AB的垂直平分線交y軸于點(diǎn)E,拋物線C在點(diǎn)A,B處的切線相交于點(diǎn)G.記四邊形AEBG的面積為S.

1)求點(diǎn)G的軌跡方程;

2)當(dāng)點(diǎn)G的橫坐標(biāo)為整數(shù)時(shí),S是否為整數(shù)?若是,請求出所有滿足條件的S的值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)當(dāng)x0時(shí),fx)≤hx)恒成立,求a的取值范圍;

(2)當(dāng)x0時(shí),研究函數(shù)Fx)=hx)﹣gx)的零點(diǎn)個(gè)數(shù);

(3)求證:(參考數(shù)據(jù):ln1.1≈0.0953).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓)的左、右焦點(diǎn)分別為,右頂點(diǎn)為,且,短軸長為.

1)求橢圓的方程;

2)若過點(diǎn)作垂直軸的直線,點(diǎn)為直線上縱坐標(biāo)不為零的任意一點(diǎn),過的垂線交橢圓于點(diǎn),當(dāng)時(shí),求此時(shí)四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓臺的軸截面為等腰梯形,圓臺的側(cè)面積為.若點(diǎn)分別為圓上的動點(diǎn),且點(diǎn)在平面的同側(cè).

1)求證:;

2)若,則當(dāng)三棱錐的體積取最大值時(shí),求多面體的體積.

查看答案和解析>>

同步練習(xí)冊答案