【題目】已知橢圓)的左、右焦點分別為,右頂點為,且,短軸長為.

1)求橢圓的方程;

2)若過點作垂直軸的直線,點為直線上縱坐標(biāo)不為零的任意一點,過的垂線交橢圓于點,當(dāng)時,求此時四邊形的面積.

【答案】12

【解析】

1)依題意可得,解方程組即可求出橢圓的方程;

2)設(shè),則,設(shè)直線的方程為,聯(lián)立直線與橢圓方程,消去,設(shè),,列出韋達定理,即可表示,再根據(jù)求出參數(shù),從而得出,最后由點到直線的距離得到,由即可得解;

解:(1)∵,∴解得

∴橢圓的方程為.

2)∵,∴可設(shè),∴.,

,∴設(shè)直線的方程為,

,∴,顯然恒成立.

設(shè),,則,,

.

,

,∴解得,解得

,,∴.

∵此時直線的方程為,

∴點到直線的距離為,

,

即此時四邊形的面積為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線C)的焦點為F,經(jīng)過點F的動直線l交拋物線C兩點,且.

1)求拋物線C的方程;

2)若O為坐標(biāo)原點),且點E在拋物線C上,求直線l的傾斜角;

3)若點M是拋物線C的準(zhǔn)線上的一點,直線,斜率分別為,,,求證:當(dāng)為定值時,也為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地為改善旅游環(huán)境進行景點改造.如圖,將兩條平行觀光道l1l2通過一段拋物線形狀的棧道AB連通(道路不計寬度),l1l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點,拋物線的對稱軸垂直于l3,且交l3M),在堤岸線l3上的EF兩處建造建筑物,其中E,FM的距離為1(百米),且F恰在B的正對岸(即BFl3).

1)在圖②中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;

2)游客(視為點P)在棧道AB的何處時,觀測EF的視角(EPF)最大?請在(1)的坐標(biāo)系中,寫出觀測點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓()的離心率為,以的短軸為直徑的圓與直線相切.

1)求的方程;

2)直線,兩點,且.已知上存在點,使得是以為頂角的等腰直角三角形,若在直線的右下方,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過點的直線與橢圓交于兩點,延長交橢圓于點的周長為8.

(1)求的離心率及方程;

(2)試問:是否存在定點,使得為定值?若存在,求;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等腰梯形中,,的中點.將沿折起后如圖2,使二面角成直二面角,設(shè)的中點,是棱的中

點.

1)求證:;

2)求證:平面平面;

3)判斷能否垂直于平面,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)試求函數(shù)零點的個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年國慶節(jié)假期期間,某商場為掌握假期期間顧客購買商品人次,統(tǒng)計了1017002300這一時間段內(nèi)顧客購買商品人次,統(tǒng)計發(fā)現(xiàn)這一時間段內(nèi)顧客購買商品共5000人次顧客購買商品時刻的的頻率分布直方圖如下圖所示,其中時間段7001100,11001500,1500190019002300,依次記作[7,11),[11,15),[15,19),[19,23].

1)求該天顧客購買商品時刻的中位數(shù)t與平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)由頻率分布直方圖可以近似認為國慶節(jié)假期期間該商場顧客購買商品時刻服從正態(tài)分布Nμ,δ2),其中μ近似為,δ3.6,估計2019年國慶節(jié)假期期間(101日﹣107日)該商場顧客在12121924之間購買商品的總?cè)舜危ńY(jié)果保留整數(shù));

3)為活躍節(jié)日氣氛,該商場根據(jù)題中的4個時間段分組,采用分層抽樣的方法從這5000個樣本中隨機抽取10個樣本(假設(shè)這10個樣本為10個不同顧客)作為幸運客戶,再從這10個幸運客戶中隨機抽取4人每人獎勵500元購物券,其他幸運客戶每人獎勵200元購物券,記獲得500元購物券的4人中在15001900之間購買商品的人數(shù)為X,求X的分布列與數(shù)學(xué)期望;

參考數(shù)據(jù):若TNμ,σ2),則①PμσT≤μ+σ)=0.6827;②PμT≤μ+2σ)=0.9545;③PμT≤μ+3σ)=0.9973.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若,設(shè),證明:,使.

查看答案和解析>>

同步練習(xí)冊答案