正三棱柱的所有棱長都為4,D為的中點.

(1)求證:⊥平面;
(2)求二面角余弦值.

(1)詳見解析;(2).

解析試題分析:(1)先根據(jù)題意找到BC中點O,證明,平面,從而以O為原點構造出空間直角坐標系.在寫出平面中相關向量坐標以及的坐標,由向量的數(shù)量積為0證明線線垂直,從而得到⊥平面;(2)先求出平面的法向量,又由上問可知平面的法向量即,再通過向量的夾角公式得到這兩個法向量的夾角余弦值,經(jīng)觀察可知即為二面角余弦值.從而得到本題的解.
試題解析:(1)取BC中點O,連AO,
為正三角形, ∴,
∵在正三棱柱中,平面ABC平面,∴平面,
中點為,以O為原點,,,的方向為,軸的正方向,建立空間直角坐標系,

.
,
,.
,,∴   
(2)設平面的法向量為,.
,∴,∴,,令,得為平面的一個法向量,由(1)知,
為平面的法向量,,
經(jīng)檢驗易知二面角的余弦值為.
考點:1.向量數(shù)量積表示垂直;2.平面的法向量;3.二面角.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖(1),四邊形ABCD中,E是BC的中點,DB=2,DC=1,BC=,AB=AD=.將圖(1)沿直線BD折起,使得二面角A­BD­C為60°,如圖(2).

(1)求證:AE⊥平面BDC;
(2)求直線AC與平面ABD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

平行四邊形中,為折線,把折起,使平面平面,連接

(1)求證:
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥平面ABCD,SD=AD=2,請建立空間直角坐標系解決下列問題.

(1)求證:;(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,∥AE,,分別為的中點.

(1)求異面直線所成角的大;
(2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在如圖所示的空間直角坐標系O-xyz中,原點O是BC的中點,A點坐標為,D點在平面yoz上,BC=2,∠BDC=90°,∠DCB=30°.

(Ⅰ)求D點坐標;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直四棱柱中,底面為平行四邊形,且,,,的中點.

(1) 證明:∥平面
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面為一直角梯形,其中,底面的中點.
(1)試用表示,并判斷直線與平面的位置關系;
(2)若平面,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)如圖:四棱錐P—ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點F是PB的中點,點E在邊BC上移動.
(1)證明:無論點E在BC邊的何處,都有PE⊥AF;
(2)當BE等于何值時,PA與平面PDE所成角的大小為45°. 

查看答案和解析>>

同步練習冊答案