(本小題12分)如圖:四棱錐P—ABCD中,底面ABCD
是矩形,PA⊥底面ABCD,PA=AB=1,AD=,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在邊BC上移動.
(1)證明:無論點(diǎn)E在BC邊的何處,都有PE⊥AF;
(2)當(dāng)BE等于何值時(shí),PA與平面PDE所成角的大小為45°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,點(diǎn)D是BC的中點(diǎn).
(1)求異面直線A1B與C1D所成角的余弦值;
(2)求平面ADC1與平面ABA1所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD為矩形,PD⊥平面ABCD,PD∥QA,QA=AD=PD.
(1)求證:平面PQC⊥平面DCQ;
(2)若二面角Q-BP-C的余弦值為-,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四棱錐SABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點(diǎn).
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,,,,點(diǎn)、分別為、的中點(diǎn).
(1)求證:平面;
(2)求直線和平面所成角的正弦值;
(3)能否在上找到一點(diǎn),使得平面?若能,請指出點(diǎn)的位置,并加以證明;若不能,請說明理由 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四棱錐中,底面為平行四邊形,側(cè)面面,已知
(Ⅰ)求證:;
(Ⅱ)在SB上選取點(diǎn)P,使SD//平面PAC ,并證明;
(Ⅲ)求直線與面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱錐P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。
(I)求棱PB的長;
(II)求二面角P—AB—C的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分) 如圖,在三棱錐中,,,點(diǎn)分別是的中點(diǎn),底面.
(1)求證:平面;
(2)當(dāng)時(shí),求直線與平面所成角的正弦值;
(3)當(dāng)為何值時(shí),在平面內(nèi)的射影恰好為的重心.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com