如圖,四棱錐的底面為一直角梯形,其中,底面,是的中點(diǎn).
(1)試用表示,并判斷直線與平面的位置關(guān)系;
(2)若平面,求異面直線與所成角的余弦值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱錐P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。
(I)求棱PB的長;
(II)求二面角P—AB—C的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在棱長為1正方體ABCD-A1B1C1D1中,M和N分別為A1B1和BB1的中點(diǎn)
(1)求直線AM和CN所成角的余弦值;
(2)若P為B1C1的中點(diǎn),求直線CN與平面MNP所成角的余弦值;
(3)P為B1C1上一點(diǎn),且,當(dāng) B1D⊥面PMN時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
ABCD為矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P為AB的中點(diǎn).
(1)求證:平面PCF⊥平面PDE;
(2)求證:AE∥平面BCF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分) 如圖,在三棱錐中,,,點(diǎn)分別是的中點(diǎn),底面.
(1)求證:平面;
(2)當(dāng)時,求直線與平面所成角的正弦值;
(3)當(dāng)為何值時,在平面內(nèi)的射影恰好為的重心.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com