【題目】如圖,過拋物線上的一點作拋物線的切線,分別交x軸于點Dy軸于點B,點Q在拋物線上,點E,F分別在線段AQBQ上,且滿足,,線段QD交于點P.

(1)當(dāng)點P在拋物線C上,且時,求直線的方程;

(2)當(dāng)時,求的值.

【答案】(1).(2).

【解析】

(1)先求得切線的方程,由此求得兩點的坐標(biāo),確定的中點.根據(jù)三角形重心坐標(biāo)公式列式,求得點的坐標(biāo),再根據(jù)點斜式求得的方程.(2)利用列方程,證得的重心,由此求得的值.

解:(1)過拋物線上點A的切線斜率為,切線AB的方程為,

BD的坐標(biāo)分別為,,故D是線段AB的中點.

設(shè),,,,顯然P的重心.

由重心坐標(biāo)公式得,所以

,故

因為,所以,

所以直線EF的方程為.

(2)由解(1)知,AB的方程為,,D是線段AB的中點

,,

因為QD的中線,所以

,

所以,即,所以P的重心,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求不等式的解集;

(2)當(dāng)時,求方程的解;

(3)若,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生男生女都一樣,女兒也是傳后人.由于某些地區(qū)仍然存在封建傳統(tǒng)思想,頭胎的男女情況可能會影響生二孩的意愿,現(xiàn)隨機抽取某地200戶家庭進(jìn)行調(diào)查統(tǒng)計.200戶家庭中,頭胎為女孩的頻率為0.5,生二孩的頻率為0.525,其中頭胎生女孩且生二孩的家庭數(shù)為60.

1)完成下列列聯(lián)表,并判斷能否有95%的把握認(rèn)為是否生二孩與頭胎的男女情況有關(guān);

生二孩

不生二孩

合計

頭胎為女孩

60

頭胎為男孩

合計

200

2)在抽取的200戶家庭的樣本中,按照分層抽樣的方法在生二孩的家庭中抽取了7戶,進(jìn)一步了解情況,在抽取的7戶中再隨機抽取4戶,求抽到的頭胎是女孩的家庭戶數(shù)的分布列及數(shù)學(xué)期望.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)證明:f(x)≥5;

(2)若f(1)<6成立,求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過點,其參數(shù)方程為為參數(shù), ),以為極點, 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓Q經(jīng)過定點,且與定直線相切(其中a為常數(shù),且.記動圓圓心Q的軌跡為曲線C.

1)求C的方程,并說明C是什么曲線?

2)設(shè)點P的坐標(biāo)為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心為原點,焦點為,離心率為,不與坐標(biāo)軸垂直的直線與橢圓交于兩點.

1)若為線段的中點,求直線的方程.

2)若點是直線上一點,點在橢圓上,且滿足,設(shè)直線與直線的斜率分別為,,問是否為定值?若是,請求出的值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點,分別為棱,的中點,點為上底面的中心,過,三點的平面把正方體分為兩部分,其中含的部分為,不含的部分為,連結(jié)的任一點,設(shè)與平面所成角為,則的最大值為

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若直線在點處切線方程為,求實數(shù)的值;

(Ⅱ)若函數(shù)3個零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案