【題目】已知動圓Q經過定點,且與定直線相切(其中a為常數,且).記動圓圓心Q的軌跡為曲線C.
(1)求C的方程,并說明C是什么曲線?
(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐M-ABCD中,MB⊥平面ABCD,四邊形ABCD是矩形,AB=MB,E、F分別為MA、MC的中點.
(1)求證:平面BEF⊥平面MAD;
(2)若,求三棱錐E-ABF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的準線與x軸的交點為H,點F為拋物線的焦點,點P在拋物線上且,當k最大時,點P恰好在以H,F為焦點的雙曲線上,則k的最大值為_____,此時該雙曲線的離心率為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左頂點為,右焦點為,點在橢圓上.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,直線分別與軸交于點,在軸上,是否存在點,使得無論非零實數怎樣變化,總有為直角?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,過拋物線上的一點作拋物線的切線,分別交x軸于點D交y軸于點B,點Q在拋物線上,點E,F分別在線段AQ,BQ上,且滿足,,線段QD與交于點P.
(1)當點P在拋物線C上,且時,求直線的方程;
(2)當時,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列的前項和為,若存在正整數,且,使得,同時成立,則稱數列為“數列”.
(1)若首項為,公差為的等差數列是“數列”,求的值;
(2)已知數列為等比數列,公比為.
①若數列為“數列”,,求的值;
②若數列為“數列”,,求證:為奇數,為偶數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,底面是邊長為4的正三角形,,底面,點分別為,的中點.
(1)求證:平面平面;
(2)在線段上是否存在點,使得直線與平面所成的角的正弦值為?若存在,確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,梯形中,,過分別作,,垂足分別,,已知,將梯形沿同側折起,得空間幾何體 ,如圖.
1若,證明:平面;
2若,,線段上存在一點,滿足與平面所成角的正弦值為,求的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com