【題目】已知函數(shù).
(Ⅰ)若直線在點處切線方程為,求實數(shù)的值;
(Ⅱ)若函數(shù)有3個零點,求實數(shù)的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)求出導函數(shù),根據(jù)題意利用導數(shù)的幾何意義可得,求解即可.
(Ⅱ)將函數(shù)轉化為,從而可得方程有2個不為1的不等實數(shù)根,然后分離參數(shù)后則有函數(shù)與 圖象有兩個交點,利用導數(shù)畫出的簡圖,利用數(shù)形結合即可求解.
(Ⅰ)因為,
得,
所以.
因為曲線在點處的切線方程為,
所以,即.
(Ⅱ),
所以有一個零點.
要使得有3個零點,即方程有2個不為1的不等實數(shù)根,
又方程,令,
即函數(shù)與圖象有兩個交點,
令,得.
的單調性如表:
1 | ||||
- | - | 0 | + | |
極小值 |
當時,,又,
可作出的大致圖象,由圖象得
所以,要使得有3個零點,
則實數(shù)的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過拋物線上的一點作拋物線的切線,分別交x軸于點D交y軸于點B,點Q在拋物線上,點E,F分別在線段AQ,BQ上,且滿足,,線段QD與交于點P.
(1)當點P在拋物線C上,且時,求直線的方程;
(2)當時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓()的左右焦點分別為,橢圓的上頂點為點,點為橢圓上一點,且.
(1)求橢圓的離心率;
(2)若,過點的直線交橢圓于兩點,求線段的中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是由兩個全等的菱形和組成的空間圖形,,∠BAF=∠ECD=60°.
(1)求證:;
(2)如果二面角B-EF-D的平面角為60°,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若是公差不為0的等差數(shù)列的前項和,且成等比數(shù)列,.
(1)求數(shù)列的通項公式;
(2)設是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,梯形中,,過分別作,,垂足分別,,已知,將梯形沿同側折起,得空間幾何體 ,如圖.
1若,證明:平面;
2若,,線段上存在一點,滿足與平面所成角的正弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究國民收入在國民之間的分配,避免貧富過分懸殊,美國統(tǒng)計學家勞倫茨提出了著名的勞倫茨曲線,如圖所示:勞倫茨曲線為直線時,表示收入完全平等,勞倫茨曲線為折線時,表示收入完全不平等記區(qū)域為不平等區(qū)域,表示其面積,為的面積.將,稱為基尼系數(shù).對于下列說法:
①越小,則國民分配越公平;
②設勞倫茨曲線對應的函數(shù)為,則對,均有;
③若某國家某年的勞倫茨曲線近似為,則;
④若某國家某年的勞倫茨曲線近似為,則.
其中不正確的是:( )
A.①④B.②③C.①③④D.①②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省開展“精準脫貧,攜手同行”的主題活動,某貧困縣統(tǒng)計了100名基層干部走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5組,統(tǒng)計結果見下表.
走訪數(shù)量區(qū)間 | 頻數(shù) | 頻率 |
b | ||
10 | ||
38 | ||
a | 0.27 | |
9 | ||
總計 | 100 | 1.00 |
(1)求a與b的值;
(2)根據(jù)表中數(shù)據(jù),估計這100名基層干部走訪數(shù)量的中位數(shù)(精確到個位);
(3)如果把走訪貧困戶不少于35戶視為“工作出色”,按照分層抽樣,從“工作出色”的基層干部中抽取4人,再從這4人中隨機抽取2人,求其中有1人走訪貧困戶不少于45戶的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設中心在原點,焦點在軸上的橢圓過點,且離心率為.為的右焦點,為上一點,軸,的半徑為.
(1)求和的方程;
(2)若直線與交于兩點,與交于兩點,其中在第一象限,是否存在使?若存在,求的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com