已知函數(shù)y=f(x)是定義域為R的偶函數(shù).當x≥0時,f(x)=
5
2
x2(0≤x≤1)
(
1
2
)x+2(x>1)
,若關于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個不同實數(shù)根,則實數(shù)a的取值范圍是( 。
A、(-5,-3)∪(-1,0)
B、(-5,-2)∪(-
9
2
,
9
2
)
C、(-5,-
9
2
)∪(-
9
2
,-2)
D、(-
9
2
,-2)∪(-2,-1)
考點:根的存在性及根的個數(shù)判斷
專題:計算題,作圖題,函數(shù)的性質及應用
分析:作出f(x)=
5
2
x2(0≤x≤1)
(
1
2
)x+2(x>1)
的圖象,從而由題意可得x2+ax+b=0的兩根分別x1=
5
2
,2<x2
5
2
或0<x1≤2,2<x2
5
2
;從而求解.
解答: 解:作出f(x)=
5
2
x2(0≤x≤1)
(
1
2
)x+2(x>1)
的圖象如下,

又∵函數(shù)y=f(x)是定義域為R的偶函數(shù),
且關于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個不同實數(shù)根,
∴x2+ax+b=0的兩根分別為x1=
5
2
,2<x2
5
2
或0<x1≤2,2<x2
5
2
;
由韋達定理可得,x1+x2=-a;
若x1=
5
2
,2<x2
5
2
,
9
2
<-a<5,
即-5<a<-
9
2
;
若0<x1≤2,2<x2
5
2
;
則2<-a<
9
2
,
故-
9
2
<a<-2;
故選C.
點評:本題考查了函數(shù)的零點與方程的根的聯(lián)系,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求適合下列條件的雙曲線的標準方程:
(1)焦點在x軸上,a=2
5
,經(jīng)過點A(-5,2);
(2)經(jīng)過兩點A(-7,-6
2
),B(2
7
,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心為原點,以坐標軸為對稱軸,且經(jīng)過(-
1
2
3
),(
2
2
,
2
)兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點A(0,1)的直線l交橢圓C于M、N兩點,若OM⊥ON,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二函數(shù)f(x)=ax2+bx+5(x∈R)滿足以下要求:
①函數(shù)f(x)的值域為[1,+∞);②f(-2+x)=f(-2-x)對x∈R恒成立.
(1)求函數(shù)f(x)的解析式;
(2)設M(x)=
f(lnx)
lnx+1
,求x∈[e,e2]時M(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

城市內環(huán)高架能改善整個城市的交通狀況,在一般情況下,高架上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當高架上的車流密度達到188輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過28輛/千米時,車流速度為80千米/小時.研究表明:當28≤x≤188時,車流速度v是車流密度x的一次函數(shù).
(1)當0≤x≤188時,求車流速度v關于車流密度x的函數(shù)解析式;
(2)若車流速度v不低于50千米/小時,求車流密度x為多大時,車流量f(x)(單位時間內通過高架橋上某觀測點的車輛數(shù),單位:輛/小時,車流量=車流密度×車流速度)可以達到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:x2+(y-4)2=4,直線l:ax+y+2a=0.
(1)當a為何值時,直線l與圓C相切;
(2)當直線l與圓C相交于A、B兩點,且AB=2
2
時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x|x-2|若存在互不相等的實數(shù)a,b,c使得f(a)=f(b)=f(c)成立,則a+b+c的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,O為正方體AC1的底面ABCD的中心,異面直線B1O與A1C1所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從甲、乙、丙、丁四名同學中選出三名同學,分別參加三個不同科目的競賽,其中甲同學必須參賽,則不同的參賽方案共有
 
種.

查看答案和解析>>

同步練習冊答案