已知橢圓C的中心為原點,以坐標軸為對稱軸,且經(jīng)過(-
1
2
,
3
),(
2
2
,
2
)兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點A(0,1)的直線l交橢圓C于M、N兩點,若OM⊥ON,求直線l的方程.
考點:直線與圓錐曲線的關(guān)系,橢圓的標準方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)設(shè)出橢圓的標準方程,將(-
1
2
3
),(
2
2
,
2
)代入構(gòu)造方程組,從而求得橢圓C的標準方程.
(Ⅱ)設(shè)過點A(0,1)的直線l與橢圓C交于M(x1,y1),N(x2,y2),把直線代入橢圓的方程,再利用韋達定理求得 x1+x2 和x1•x2.根據(jù)OM⊥ON,即
OM
ON
=0,求得k的值.根可得直線l的方程.
解答: 解:(Ⅰ)設(shè)橢圓的方程為mx2+ny2=1,(m>0,n>0,m≠n),
∵橢圓C經(jīng)過(-
1
2
,
3
),(
2
2
2
)兩點,
1
4
m+3n=1
1
2
m+2n=1
,
解得:
m=1
n=
1
4

∴橢圓C的標準方程為
y2
4
+x
2
=1

(Ⅱ)由題意知,直線l的斜率存在,
設(shè)直線l與橢圓C交于M(x1,y1),N(x2,y2)兩點,
y2
4
+x
2
=1
y=kx+1
,可得 (k2+4)x2+2kx-3=0,
∴x1+x2=-
2k
k2+4
,x1•x2=-
3
k2+4

∵OM⊥ON,
OM
ON
=0,
即 x1•x2+y1•y2=0,即(1+k2)x1•x2+k(x1+x2)+1=0,
即 (1+k2)(
-3
k2+4
)+k(
-2k
k2+4
)+1=0,化間得-4k2+1=0,解得k=±
1
2

故直線l的方程為:y=±
1
2
x+1,即x-2y+2=0,或x+2y-2=0.
點評:本題主要考查橢圓的標準方程,直線和圓錐曲線的位置關(guān)系的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,過坐標原點O的直線與雙曲線C在第一象限內(nèi)交于點P,若|PF1|+|PF2|=6a,且△PF1F2為銳角三角形,則直線OP斜率的取值范圍是( 。
A、(
2
3
3
,
4
3
)
B、(
4
3
,
3
)
C、(1,
2
3
3
)
D、(
2
3
3
,
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在數(shù)列{bn}使得(2b1-n)C
 
1
n
+(2b2-n)C
 
2
n
+(2b3-n)C
 
3
n
+…+(2bn-n)C
 
n
n
=n對一切n∈N*成立?若存在,求數(shù)列{bn}的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(3π+α)=lg
1
310
,則tan(π+α)的值是( 。
A、-
2
4
B、
2
4
C、±
2
4
D、
2
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ln(x-1)+
2a
x
(其中x>1,a≥0)

(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知對任意的x∈(1,2)∪(2,+∞),不等式
1
x-2
[f(x)-a]>0
成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx,g(x)=mx-
x3
6
(m為實數(shù)).
(Ⅰ)求曲線y=f(x)在點P(
π
4
,f(
π
4
))處的切線方程;
(Ⅱ)求函數(shù)g(x)的單調(diào)減區(qū)間;
(Ⅲ)若m=1,證明:當(dāng)x>0時,x>f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+ax+
a+1
x
+3(a∈R).
(1)當(dāng)a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(2)當(dāng)a=1時,若關(guān)于x的不等f(x)≥m2-5m恒成立,求實數(shù)m的取值范圍;
(3)當(dāng)a≥-
1
2
時,討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是定義域為R的偶函數(shù).當(dāng)x≥0時,f(x)=
5
2
x2(0≤x≤1)
(
1
2
)x+2(x>1)
,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個不同實數(shù)根,則實數(shù)a的取值范圍是(  )
A、(-5,-3)∪(-1,0)
B、(-5,-2)∪(-
9
2
9
2
)
C、(-5,-
9
2
)∪(-
9
2
,-2)
D、(-
9
2
,-2)∪(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐S-ABC中,∠SBA=∠SCA=90°,△ABC是斜邊AB=a的等腰直角三角形,則以下結(jié)論中:
①異面直線SB與AC所成的角為90°.
②直線SB⊥平面ABC;
③平面SBC⊥平面SAC;
④點C到平面SAB的距離是
1
2
a.
其中正確的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案