已知雙曲線-=1(a>0,b>0)的一條漸近線方程是y=x,它的一個焦點在拋物線y2=48x的準(zhǔn)線上.則雙曲線的方程為( )
A.-=1 B.-=1
C.-=1 D.-=1
科目:高中數(shù)學(xué) 來源: 題型:
已知圓的半徑為2,圓心在x軸的正半軸上,且與直線3x+4y+4=0相切,則圓的方程是( )
A.x2+y2-4x=0 B.x2+y2+4x=0
C.x2+y2-2x-3=0 D.x2+y2+2x-3=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)滿足:①對任意實數(shù)都有;②對任意,有;③不恒為0,且當(dāng)時,。
(1)求,的值;
(2)判斷的奇偶性,并給出你的證明;
(3)定義:“若存在非零常數(shù)T,使得對函數(shù)定義域中的任意一個,均有,則稱為以T為周期的周期函數(shù)”。試證明:函數(shù)為周期函數(shù),并求出
的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:+=1(a>b>0)的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)在的三角形的面積為.
(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A、B兩點.
①若線段AB中點的橫坐標(biāo)為-,求斜率k的值;
②若點M(-,0),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知動圓過定點A(4,0),且在y軸上截得弦長MN的長為8.
(1)求動圓圓心的軌跡C的方程;
(2)已知點B(-1,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)F1,F2分別是雙曲線-=1(a>0,b>0)的左、右焦點,若雙曲線的右支上存在一點P,使=0,且△F1PF2的三邊長構(gòu)成等差數(shù)列,則此雙曲線的離心率為( )
A. B.
C.2 D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)曲線x2-y2=0與拋物線y2=-4x的準(zhǔn)線圍成的三角形區(qū)域(包含邊界)為D,P(x,y)為D內(nèi)的一個動點,則目標(biāo)函數(shù)z=x-2y+5的最大值為( )
A.4 B.5
C.8 D.12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com