在直三棱柱中,,分別是棱上的點(diǎn)(點(diǎn) 不同于點(diǎn)),且為的中點(diǎn).
求證:(1)平面平面;
(2)直線平面.
(1)∵是直三棱柱,∴平面, 又∵平面,∴,又∵平面,∴平面, 又∵平面,∴平面平面
(2)∵,為的中點(diǎn),∴,又∵平面,且平面,∴,又∵平面,,∴平面
解析試題分析:(1)∵是直三棱柱,∴平面, 又∵平面,∴,
又∵平面,∴平面, 又∵平面,∴平面平面
(2)∵,為的中點(diǎn),∴,
又∵平面,且平面,∴,
又∵平面,,∴平面,
由(1)知,平面,∴∥,
又∵平面平面,∴直線平面.
考點(diǎn):本題考查了空間線面關(guān)系的判斷
點(diǎn)評(píng):以棱柱為載體考查立體幾何中的線面、面面、點(diǎn)面位置關(guān)系或距離是高考的亮點(diǎn),掌握其判定性質(zhì)及定理,是解決此類問題的關(guān)鍵
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)在直三棱柱(側(cè)棱垂直底面)中,,.
(Ⅰ)若異面直線與所成的角為,求棱柱的高;
(Ⅱ)設(shè)是的中點(diǎn),與平面所成的角為,當(dāng)棱柱的高變化時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
.(本題滿分12分) 如圖,PA垂直于矩形ABCD所在的平面, ,E、F分別是AB、PD的中點(diǎn).
(1)求證:平面PCE 平面PCD;
(2)求三棱錐P-EFC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖所示是一個(gè)半圓柱與三棱柱的組合體,其中,圓柱的軸截面是邊長為4的正方形,為等腰直角三角形,.
試在給出的坐標(biāo)紙上畫出此組合體的三視圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)在正四棱錐中,側(cè)棱的長為,與所成的角的大小等于.
(1)求正四棱錐的體積;
(2)若正四棱錐的五個(gè)頂點(diǎn)都在球的表面上,求此球的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,平面⊥平面,是直角三角形,,四邊形是直角梯形,其中,,,且,是的中點(diǎn),分別是的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分12分)已知:正方體中,棱長,、分別為、的中點(diǎn),、是、的中點(diǎn),
(1)求證://平面;
(2)求:到平面的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖,在四面體中,,是的中點(diǎn).
(1)求證:平面;
(2)設(shè)為的重心,是線段上一點(diǎn),且.求證:平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com