(本小題滿分12分)
如圖,平面⊥平面,是直角三角形,,四邊形是直角梯形,其中,,,且,的中點,分別是的中點.

(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值.

(Ⅰ)取的中點,證明四邊形為平行四邊形, ∴,則平面(Ⅱ)2

解析試題分析:(Ⅰ)取的中點,連接,由中點,
中點,∴,
,故四邊形為平行四邊形,                             ……3分
,則平面.                                         ……4分
(Ⅱ) 連接,則,又,平面⊥平面
⊥面, 故面⊥面,                                   ……6分
,則⊥面,
,連
,故為二面角的平面角,                     ……8分
由于的中點,故===1,
,,
的中點,故,又的中點,可知,
從而,又的中點,∴的中點∴==,   ……11分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在如圖所示的四棱錐中,已知 PA⊥平面ABCD, , ,,
的中點.

(1)求證:MC∥平面PAD;
(2)求直線MC與平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 是邊長為的正方形,平面,,與平面所成角為.

(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點,使得平面?若存在,試確定點的位置;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直三棱柱中,,分別是棱上的點(點 不同于點),且的中點.

求證:(1)平面平面;
(2)直線平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)如圖,已知四棱錐P—ABCD中,底面ABCD為菱形,PA平面ABCD,,BC=1,E為CD的中點,PC與平面ABCD成角。

(1)求證:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,四棱錐P--ABCD中,PB底面ABCD.底面ABCD為直角梯形,AD∥BC,AB=AD=PB=3,BC=6.點E在棱PA上,且PE=2EA.

(1)求異面直線PA與CD所成的角;
(2)求證:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
如圖,在□ABCD中,∠DAB=60°,AB=2,AD="4." 將△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.

(1)求證:AB⊥DE;
(2)求三棱錐E—ABD的側面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)如圖,在四棱錐中,底面是正方形,側棱底面,的中點,作于點

(1)證明:平面.
(2)證明:平面.
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,底面, ,   ,的中點.
(Ⅰ)證明:;
(Ⅱ)證明:平面;
(Ⅲ)求二面角的正切值.

查看答案和解析>>

同步練習冊答案