(本小題滿分14分)如圖,在四面體中,,的中點(diǎn).

(1)求證:平面;
(2)設(shè)的重心,是線段上一點(diǎn),且.求證:平面.

(1)見解析(2) 見解析

解析試題分析:(1)由 ………………………… 3分
同理,,又∵,平面,∴平面………7分
(2)連接AG并延長(zhǎng)交CD于點(diǎn)O,連接EO.因?yàn)镚為的重心,所以,
,所以 ……………………………………………………11分
,,所以平面 ……………………………14分
考點(diǎn):線面平行垂直的判定定理
點(diǎn)評(píng):充分利用中點(diǎn),比例線段構(gòu)成的平行垂直關(guān)系

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直三棱柱中,,分別是棱上的點(diǎn)(點(diǎn) 不同于點(diǎn)),且的中點(diǎn).

求證:(1)平面平面;
(2)直線平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)如圖,在四棱錐中,底面是正方形,側(cè)棱底面,的中點(diǎn),作于點(diǎn)

(1)證明:平面.
(2)證明:平面.
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在長(zhǎng)方體 ,中點(diǎn).

(1)求證:;
(2)在棱上是否存在一點(diǎn),使得平面若存在,求的長(zhǎng);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
如圖,在四棱錐中,底面為平行四邊形,平面在棱上.

(I)當(dāng)時(shí),求證平面
(II)當(dāng)二面角的大小為時(shí),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)
在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E的棱AB上移動(dòng)。
(I)證明:D1EA1D;
(II)AE等于何值時(shí),二面角D1-EC-D的大小為。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面, ,   ,的中點(diǎn).
(Ⅰ)證明:
(Ⅱ)證明:平面;
(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知棱長(zhǎng)為a的正方體ABCD—A1B1C1D1,E為BC中點(diǎn).
(1)求B到平面B1ED距離
(2)求直線DC和平面B1ED所成角的正弦值. (12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形,中點(diǎn).
(Ⅰ)證明:平面;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案