為了讓學(xué)生了解更多“奧運(yùn)會”知識,某中學(xué)舉行了一次“奧運(yùn)知識競賽”,共有800名學(xué)生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請你根據(jù)尚未完成并有局部污損的頻率分布表,解答下列問題:
分組頻數(shù)頻率
60.5~70.50.16
70.5~80.510
80.5~90.5180.36
90.5~100.5
合計(jì)
(1)若用系統(tǒng)抽樣的方法抽取50個(gè)樣本,現(xiàn)將所有學(xué)生隨機(jī)地編號為000,001,002,…,799,試寫出第二組第一位學(xué)生的編號;
(2)填充頻率分布表的空格(將答案直接填在表格內(nèi)),并作出頻率分布直方圖;
(3)若成績在85.5~95.5分的學(xué)生為二等獎(jiǎng),問參賽學(xué)生中獲得二等獎(jiǎng)的學(xué)生約為多少人?
考點(diǎn):系統(tǒng)抽樣方法
專題:概率與統(tǒng)計(jì)
分析:(1)根據(jù)系統(tǒng)抽樣法則,由于要從800個(gè)人中抽取50個(gè)樣本,故需要分成50組,每組16人,則第二組第一位學(xué)生的編號為016號.
(2)由頻數(shù)=頻率×樣本容量,各組頻率和為1,我們易求出各組的頻率和頻數(shù),填滿表格中的數(shù)據(jù).
(3)由頻率分布直方表中成績在85.5~95.5分的頻率,我們易根據(jù)總體容量為800,估算出參賽學(xué)生中獲得二等獎(jiǎng)的學(xué)生人數(shù).
解答: 解:(1)根據(jù)系統(tǒng)抽樣法則,
∵要從800個(gè)人中抽取50個(gè)樣本,
∴可將總體分為50組
故每組有800÷50=16人,
則第二組第一位學(xué)生的編號為016號.…(3分)
(2)頻率分布表為:
分組頻數(shù)頻率
60.5~70.580.16
70.5~80.5100.20
80.5~90.5180.36
90.5~100.5140.28
合計(jì)501
頻率分布直方圖:
…(8分)
(3)在被抽到的學(xué)生中獲二獎(jiǎng)的人數(shù)是9+7=16人,
占樣本的比例是
16
50
=0.32
,即獲二等獎(jiǎng)的概率約為32%,
所以獲二等獎(jiǎng)的人數(shù)估計(jì)為800×32%=256人.
答:獲二等獎(jiǎng)的大約有256人 ….(12分)
點(diǎn)評:本題考查的知識點(diǎn)是頻率分布直方圖,系統(tǒng)抽樣方法,頻率分布表,其中頻數(shù)=頻率×樣本容量,是解答頻率分布直方表問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測試,學(xué)生如果通過其中2次測試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測試,而每個(gè)學(xué)生最多也只能參加5次測試.假設(shè)某學(xué)生每次通過測試的概率都是
1
3
,每次測試通過與否互相獨(dú)立.規(guī)定:若前4次都沒有通過測試,則第5次不能參加測試.
(Ⅰ)求該學(xué)生考上大學(xué)的概率.
(Ⅱ)如果考上大學(xué)或參加完5次測試就結(jié)束,記該生參加測試的次數(shù)為ξ,求P(ξ>3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(1,-1),將向量
c
=(2,3)表示成x
a
+y
b
的形式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=|1-
1
x
-
1
x-1
|最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,sin
A
2
=
5
5
,b2+c2-a2=6.
(Ⅰ)求△ABC的面積;
(Ⅱ)若sinA=sinBsinC,求△ABC的外接圓半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點(diǎn)O,左焦點(diǎn)為F1(-1,0)的橢圓C1的左頂點(diǎn)為A,上頂點(diǎn)為B,F(xiàn)1到直線AB的距離為
7
7
|OB|.
(1)求橢圓C1的方程;
(2)若橢圓C1方程為:
x2
m2
+
y2
n2
=1(m>n>0),橢圓C2方程為:
x2
m2
+
y2
n2
=λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知C2是橢圓C1的3倍相似橢圓,若直線y=kx+b與兩橢圓C1、C2交于四點(diǎn)(依次為P、Q、R、S),且
PS
+
RS
=2
QS
,試求動(dòng)點(diǎn)E(k,b)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的拋物線經(jīng)過點(diǎn)A(1,
1
4
).
(Ⅰ)求拋物線的焦點(diǎn)F的坐標(biāo);
(Ⅱ)求拋物線在點(diǎn)A處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=
4-x2
2
的圖象是曲線C.
(Ⅰ)在如圖的坐標(biāo)系中作出曲線C的示意圖,并標(biāo)出曲線C與x軸的左、右交點(diǎn)A1,A2;
(Ⅱ)設(shè)P是曲線C上位于第一象限的任意一點(diǎn),過A2作A2R垂直于直線A1P于R,設(shè)A2R與曲線C交于Q,求直線PQ斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖平面內(nèi)有三個(gè)向量
OA
、
OB
、
OC
,其中
OA
OB
的夾角為120°,
OA
OC
的夾角為30°,|
OA
|=|
OB
|=1,|
OC
|=4
3
.若
OC
OA
OB
(λ,μ),則λ+μ的值為
 

查看答案和解析>>

同步練習(xí)冊答案