9.已知三被錐S-ABC的體積為$\frac{4\sqrt{5}}{3}$,底面△ABC是邊長為2的正三角形,且所有頂點(diǎn)都在直徑為SC的球面上.則此球的半徑為2$\sqrt{2}$.

分析 設(shè)球心為O,球的半徑為R,過ABC三點(diǎn)的小圓的圓心為O1,則OO1⊥平面ABC,作SD⊥平面ABC交CO1的延長線與D,用半徑表示出OO1、高SD,利用V三棱錐S-ABC=$\frac{4\sqrt{5}}{3}$求出R的值.

解答 解:設(shè)球心為O,球的半徑為R,
過ABC三點(diǎn)的小圓的圓心為O1,則OO1⊥平面ABC,
作SD⊥平面ABC交CO1的延長線與D,如圖所示;
∵△ABC是正三角形,
∴CD=$\frac{\sqrt{3}}{2}$×2=$\sqrt{3}$,O1C=$\frac{2}{3}$CD=$\frac{2\sqrt{3}}{3}$,
∴OO1=$\sqrt{{R}^{2}-\frac{4}{3}}$,
∴高SD=2OO1=2$\sqrt{{R}^{2}-\frac{4}{3}}$;
又△ABC是邊長為2的正三角形,
∴S△ABC=$\frac{\sqrt{3}}{4}$•22=$\sqrt{3}$,
∴V三棱錐S-ABC=$\frac{1}{3}$•$\sqrt{3}$•2$\sqrt{{R}^{2}-\frac{4}{3}}$=$\frac{4\sqrt{5}}{3}$,
解得R=2$\sqrt{2}$.
故答案為:2$\sqrt{2}$.

點(diǎn)評 本題考查了棱錐的體積,球內(nèi)接多面體的應(yīng)用問題,解題的關(guān)鍵是確定點(diǎn)S到平面ABC的距離,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.平面內(nèi)給定三個向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(-1,2),$\overrightarrow{c}$=(2,1).
(1)求滿足$\overrightarrow{a}$=m$\overrightarrow$+n$\overrightarrow{c}$的實(shí)數(shù)m,n;
(2)若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow$-$\overrightarrow{a}$),求實(shí)數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知-π<x<0,sinx+cosx=$\frac{1}{5}$,
(1)求sinx-cosx的值;
(2)求$\frac{{2{{sin}^2}x+2sinx•cosx}}{1-tanx}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.根據(jù)條件求解下列問題
(1)函數(shù)f(x)=$\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$,若f(x)=3,求x;
(2)求函數(shù)的值域:y=$\frac{3x-1}{x+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=$\frac{{x}^{2}}{x-1}$(x>1)的最小值為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)的定義域是R,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax+1(x≤0)}\\{8ln(x+1)+1(x>0)}\end{array}\right.$  (a為小于0的常數(shù))設(shè)x1<x2 且f′(x1)=f′(x2),若x2-x1 的最小值大于5,則a的范圍是(-∞,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.雙語測試中,至少有一科得A才能通過測試,已知某同學(xué)語文得A的概率為0.8,英語得A的概率為0.9,兩者互不影響,則該同學(xué)通過測試的概率為0.97.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知觀測所得數(shù)據(jù)如表:
未感冒感冒合計
用某種藥252248500
未用某種藥224276500
合計4765241000
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,
K2=$\frac{1000×(252×276-224×248)^{2}}{500×500×476×524}$≈3.143.
則有90%的把握認(rèn)為用某種藥與患感冒有關(guān)系.
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某超市從2017年1月甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取100個,并按[0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:

假設(shè)甲、乙兩種酸奶獨(dú)立銷售且日銷售量相互獨(dú)立.
(Ⅰ)寫出頻率分布直方圖(甲)中的a值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為S12與S22,試比較S12與S22的大。ㄖ恍鑼懗鼋Y(jié)論);
(Ⅱ)估計在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個高于20箱且另一個不高于20箱的概率.

查看答案和解析>>

同步練習(xí)冊答案