分析 (1)利用向量相等即可得出.
(2)利用向量共線定理即可得出.
解答 解:(1)$\overrightarrow{a}$=m$\overrightarrow$+n$\overrightarrow{c}$,∴(1,3)=m(-1,2)+n(2,1).
∴$\left\{\begin{array}{l}{-m+2n=1}\\{2m+n=3}\end{array}\right.$,解得m=n=1.
(2)$\overrightarrow{a}$+k$\overrightarrow{c}$=(1+2k,3+k),2$\overrightarrow$-$\overrightarrow{a}$=(-3,1),
∵($\overrightarrow{a}$+k$\overrightarrow{c}$)∥(2$\overrightarrow$-$\overrightarrow{a}$),∴-3(3+k)=1+2k,解得k=-2.
點(diǎn)評 本題考查了向量共線定理、平面向量基本定理、向量坐標(biāo)運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | d>$\frac{8}{3}$ | B. | d<3 | C. | $\frac{8}{3}$≤d<3 | D. | $\frac{4}{3}$<d≤$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | $\frac{1}{2}$ | C. | 2 | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com