二項(xiàng)式(x2+
1
2
x
10的展開式中的常數(shù)項(xiàng)為
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:在二項(xiàng)展開式的通項(xiàng)公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項(xiàng).
解答: 解:二項(xiàng)式(x2+
1
2
x
10的展開式的通項(xiàng)公式為Tr+1=
C
r
10
•2-rx20-
5r
2
,
令20-
5r
2
=0,求得r=8,可得展開式中的常數(shù)項(xiàng)為
C
8
10
•2-8=
45
256

故答案為:
45
256
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)g(x)=x2-2x+1+mlnx,(m∈R)
(Ⅰ)當(dāng)m=1時(shí),求過(guò)點(diǎn)P(0,1)且與曲線y=g(x)-(x-1)2相切的切線方程
(Ⅱ)求函數(shù)y=g(x)的單調(diào)增區(qū)間
(Ⅲ)若函數(shù)y=g(x)有兩個(gè)極值點(diǎn)a,b,且a<b,記[x]表示不大于x的最大整數(shù),試比較sin
[g(a)]
[g(b)]
與cos[g(a)][g(b)]的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,其三條邊的長(zhǎng)為a,b,c,且(b+c):(c+a):(a+b)=4:5:6,則此三角形的最大內(nèi)角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列
1
1×3
,
1
3×5
,
1
5×7
的一個(gè)通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,設(shè)平面α∩β=EF,AB⊥α,CD⊥α,垂足分別為B,D,若增加一個(gè)條件,就能推出BD⊥EF.現(xiàn)有①AC⊥β;②AC∥EF③AC與CD在β內(nèi)的射影在同一條直線上.那么上述幾個(gè)條件中能成為增加條件的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=1,a2=2,且an+2=an+1-an,則a2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)偶函數(shù)f(x)滿足:當(dāng)x≥0時(shí),f(x)=x3-8,則{x|f(x-2)>0}=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓
x2
9
+
y2
4
=1的兩個(gè)焦點(diǎn),在橢圓上任取一點(diǎn)P(a,b),記橢圓中心到直線4ax+9by=36的距離為d,則|PF1||PF2|d2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,向量
OA
=
a
,
OB
=
b
,
OC
=
c
,A、B、C在一條直線上,且
AC
=3
BC
,則(  )
A、
c
=-
1
2
a
+
3
2
b
B、
c
=
3
2
a
-
1
2
b
C、
c
=-
a
+2
b
D、
c
=
a
+2
b

查看答案和解析>>

同步練習(xí)冊(cè)答案