【題目】求下列函數(shù)的單調(diào)區(qū)間.

1fx)=3|x|

2fx)=|x22x3|

【答案】1)減區(qū)間為(0],增區(qū)間為[0,+∞);(2)增區(qū)間是[3,-1],[1,+∞);減區(qū)間是(,-3],[1,1]

【解析】

1)化簡函數(shù)為,作出函數(shù)的圖象,即可求解;

2)作出的圖象,進而得到函數(shù)的圖象,即可求解.

1)由題意,函數(shù),圖象如圖所示,

所以函數(shù)fx)的單調(diào)遞減區(qū)間為(0],單調(diào)遞增區(qū)間為[0,+∞)

2)令,

作出的圖象,保留其在x軸及x軸上方部分,把它在x軸下方的圖象翻到x軸上方,

即可得到函數(shù)的圖象,如圖所示.

由圖象易得:函數(shù)的遞增區(qū)間是[3,-1],[1,+∞)

函數(shù)的遞減區(qū)間是(,-3],[1,1]

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)

(1)若是偶函數(shù),求k的值;

(2)設(shè)不等式的解集為A,若,求實數(shù)m的取值范圍;

(3)設(shè)函數(shù),若g(x)在有零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為調(diào)查高三年級學生的身高情況,按隨機抽樣的方法抽取80名學生,得到男生身高情況的頻率分布直方圖(圖1)和女生身高情況的頻率分布直方圖(圖2).已知圖1中身高在170~175cm的男生人數(shù)有16人

.

(1)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分比)的把握認為“身高與性別有關(guān)”?

總計

男生身高

女生身高

總計

(2)在上述80名學生中,從身高在170-175cm之間的學生按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當旗手,求3人中恰好有一名女生的概率.

0.025

0.610

0.005

0.001

5.024

4.635

7.879

10.828

參考公式及參考數(shù)據(jù)如下:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子中有5個大小質(zhì)地完全相同的球,其中2個紅球、3個黃球,從中不放回地依次隨機摸出2個球,求下列事件的概率:

1A=“第一次摸到紅球”;

2B=“第二次摸到紅球”;

3AB=“兩次都摸到紅球”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,圓的方程為,直線的極坐標方程為.

(I )寫出的極坐標方程和的平面直角坐標方程;

(Ⅱ) 若直線的極坐標方程為,設(shè)的交點為的交點為的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】人的眼皮有單眼皮與雙眼皮之分,這是由對應的基因決定的.生物學上已經(jīng)證明:決定眼皮單雙的基因有兩種,一種是顯性基因(記為),另一種是隱性基因(記為);基因總是成對出現(xiàn)(如、、、),而成對的基因中,只要出現(xiàn)了顯性基因,那么這個人就一定是雙眼皮(也就是說,“單眼皮”的充要條件是“成對的基因是”);如果不發(fā)生基因突變的話,成對的基因中,一個來自父親,另一個來自母親,但父母親提供基因時都是隨機的.有一對夫妻,兩人成對的基因都是,不考慮基因突變,求他們的孩子是單眼皮的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,若函數(shù)恰有一個零點,求實數(shù)的取值范圍;

2 時,對任意,有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,動物園要圍成相同面積的長方形虎籠四間,一面可利用原有的墻,其它各面用鋼筋網(wǎng)圍成.

(1)現(xiàn)有可圍長網(wǎng)的材料,每間虎籠的長、寬各設(shè)計為多少時,可使每間虎籠面積最大?

(2)若使每間虎籠面積為,則每間虎籠的長、寬各設(shè)計為多少時,可使圍成四間虎籠的鋼筋網(wǎng)總長最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為矩形,且平面, ,的中點.

(1)求證:

(2)求三棱錐的體積;

(3)探究在上是否存在點,使得平面,并說明理由.

查看答案和解析>>

同步練習冊答案