【題目】如圖,四邊形為矩形,且平面, ,為的中點(diǎn).
(1)求證:;
(2)求三棱錐的體積;
(3)探究在上是否存在點(diǎn),使得平面,并說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2);(3)見(jiàn)解析.
【解析】
(1)連結(jié),由幾何體的空間結(jié)構(gòu)可證得,利用線面垂直的定義可知.
(2)由(1)知為腰長(zhǎng)為1的等腰直角三角形,結(jié)合題意轉(zhuǎn)化頂點(diǎn)可得.
(3)在上存在中點(diǎn),使得.取的中點(diǎn),連結(jié). 易證得四邊形EGHC是平行四邊形,所以EG//CH,結(jié)合線面平行的判斷定理可知EG//平面PCD.
(1)連結(jié),∵為的中點(diǎn),,
∴為等腰直角三角形,
則,同理可得,∴,∴,
又,且, ∴,
又∵,∴,又,∴.
(2)由(1)知為腰長(zhǎng)為1的等腰直角三角形,
∴,而是三棱錐的高,
∴.
(3)在上存在中點(diǎn),使得.理由如下:
取的中點(diǎn),連結(jié).
∵是的中點(diǎn), ∴,且,
又因?yàn)?/span>E為BC的中點(diǎn),且四邊形ABCD為矩形,所以EC//AD,且EC=AD,
所以EC//GH,且EC=GH,所以四邊形EGHC是平行四邊形,所以EG//CH,
又EG平面PCD,CH平面PCD,所以EG//平面PCD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中心在原點(diǎn)的橢圓C1與雙曲線C2具有相同的焦點(diǎn),F(xiàn)1(﹣c,0),F(xiàn)2(c,0),P為C1與C2在第一象限的交點(diǎn),|PF1|=|F1F2|且|PF2|=5,若橢圓C1的離心率 ,則雙曲線的離心率e2的范圍是( )
A.
B.
C.(2,3)
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在拋物線y=x2與直線y=2圍成的封閉圖形內(nèi)任取一點(diǎn)A,O為坐標(biāo)原點(diǎn),則直線OA被該封閉圖形解得的線段長(zhǎng)小于 的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)且滿足條件:①;②.
(1)求的表達(dá)式;
(2)當(dāng)時(shí),證明:;
(3)若函數(shù),討論在上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為 .
(1)求圓C的直角坐標(biāo)方程;
(2)若P(x,y)是直線l與圓面 的公共點(diǎn),求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以點(diǎn)為圓心的圓經(jīng)過(guò)點(diǎn)和,線段的垂直平分線交圓于點(diǎn)和,且.
(1)求直線的方程;
(2)求圓的方程;
(3)設(shè)點(diǎn)在圓上,試問(wèn)使△的面積等于8的點(diǎn)共有幾個(gè)?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l經(jīng)過(guò)兩直線l1:2x-y+4=0與l2:x-y+5=0的交點(diǎn),且與直線x-2y-6=0垂直.
(1)求直線l的方程.
(2)若點(diǎn)P(a,1)到直線l的距離為,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線E:y2=4x,設(shè)A、B是拋物線E上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且 = (其中O為坐標(biāo)原點(diǎn))
(Ⅰ)求證:直線AB必過(guò)定點(diǎn),并求出該定點(diǎn)Q的坐標(biāo);
(Ⅱ)過(guò)點(diǎn)Q作AB的垂線與拋物線交于G、D兩點(diǎn),求四邊形AGBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為的正方體中,分別是的中點(diǎn),過(guò)三點(diǎn)的平面與正方體的下底面相交于直線;
(1)畫(huà)出直線;
(2)設(shè)求的長(zhǎng);
(3)求D到的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com