【題目】某學(xué)校為調(diào)查高三年級(jí)學(xué)生的身高情況,按隨機(jī)抽樣的方法抽取80名學(xué)生,得到男生身高情況的頻率分布直方圖(圖1)和女生身高情況的頻率分布直方圖(圖2).已知圖1中身高在170~175cm的男生人數(shù)有16人

.

(1)根據(jù)頻率分布直方圖,完成下列的列聯(lián)表,并判斷能有多大(百分比)的把握認(rèn)為“身高與性別有關(guān)”?

總計(jì)

男生身高

女生身高

總計(jì)

(2)在上述80名學(xué)生中,從身高在170-175cm之間的學(xué)生按男、女性別分層抽樣的方法,抽出5人,從這5人中選派3人當(dāng)旗手,求3人中恰好有一名女生的概率.

0.025

0.610

0.005

0.001

5.024

4.635

7.879

10.828

參考公式及參考數(shù)據(jù)如下:

【答案】(1) 見解析;(2).

【解析】

試題(1)利用除以對(duì)應(yīng)的頻率,可得到男生的人數(shù),總?cè)藬?shù)減去男生的人數(shù)得到女生的人數(shù).利用頻率可計(jì)算得男生、女生身高超過的人數(shù),并填寫好表格,理由利用公式計(jì)算得的值,比較后可知能有的把握.(2)依題意可知男生4人,女生1人,利用列舉法得出基本事件的總數(shù)和符合題意事件的總數(shù),并計(jì)算得概率.

試題解析:(1) 男生人數(shù): ,女生人數(shù): ,

男生身高的人數(shù),女生身高的人數(shù),所以可得到下列列聯(lián)表:

總計(jì)

男生身高

30

10

40

女生身高

4

36

40

總計(jì)

34

46

80

所以能有的把握認(rèn)為身高與性別有關(guān);

(2)在之間的男生有16人,女生人數(shù)有4人.

按分層抽樣的方法抽出5人,則男生占4人,女生占1人.

設(shè)男生為, , , ,女生為.

從5人任選3名有: , , , , , , , , ,共10種可能, 3人中恰好有一名女生有: , , , , , 共6種可能,故所求概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1時(shí),求上的單調(diào)區(qū)間;

2, 均恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線過點(diǎn),其參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知曲線和曲線交于兩點(diǎn)之間),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從分別寫有12,3,4,55張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)產(chǎn)品從51日起開始上市,通過市場(chǎng)調(diào)查,得到該農(nóng)產(chǎn)品種植成本Q(單位:元/)與上市時(shí)間t(單位:天)的數(shù)據(jù)如下表:

t

50

110

250

Q

150

108

150

1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個(gè)函數(shù)描述該農(nóng)產(chǎn)品種植成本Q與上市時(shí)間t的變化關(guān)系,并求出函數(shù)關(guān)系式:,,.

2)利用你選取的函數(shù),求該農(nóng)產(chǎn)品種植成本最低時(shí)的上市時(shí)間及最低種植成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】因客流量臨時(shí)增大,某鞋店擬用一個(gè)高為50(即)的平面鏡自制一個(gè)豎直擺放的簡(jiǎn)易鞋鏡,根據(jù)經(jīng)驗(yàn):一般顧客的眼睛到地面的距離為)在區(qū)間內(nèi),設(shè)支架高為,顧客可視的鏡像范圍為(如圖所示),記的長(zhǎng)度為).

(I)當(dāng)時(shí),試求關(guān)于的函數(shù)關(guān)系式和的最大值;

(II)當(dāng)顧客的鞋在鏡中的像滿足不等關(guān)系(不計(jì)鞋長(zhǎng))時(shí),稱顧客可在鏡中看到自己的鞋,若使一般顧客都能在鏡中看到自己的鞋,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商品促銷活動(dòng)設(shè)計(jì)了一個(gè)摸獎(jiǎng)游戲:在一個(gè)口袋中裝有4個(gè)紅球和6個(gè)白球,這些球除顏色外完全相同,顧客一次從中摸出3個(gè)球,若3個(gè)都是白球則無獎(jiǎng)勵(lì),若有1個(gè)紅球則獎(jiǎng)勵(lì)10元購(gòu)物券,若有2個(gè)紅球則獎(jiǎng)勵(lì)20元購(gòu)物券,若3個(gè)都是紅球則獎(jiǎng)勵(lì)30元購(gòu)物券.

(Ⅰ)求中獎(jiǎng)的概率;

(Ⅱ)求顧客摸獎(jiǎng)一次獲得購(gòu)物券獎(jiǎng)勵(lì)的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的單調(diào)區(qū)間.

1fx)=3|x|;

2fx)=|x22x3|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、90后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的

C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多

D. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80后多

查看答案和解析>>

同步練習(xí)冊(cè)答案