如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求證:BF∥平面ACE;
(2)求證:BF⊥BD.
證明 (1)AC與BD交于O點(diǎn),連接EO.
正方形ABCD中,BO=AB,又因?yàn)?i>AB=EF,
∴BO=EF,又因?yàn)?i>EF∥BD,
∴EFBO是平行四邊形,
∴BF∥EO,又∵BF⊄平面ACE,EO⊂平面ACE,
∴BF∥平面ACE.(7分)
(2)正方形ABCD中,AC⊥BD,又因?yàn)檎叫?i>ABCD和三角形ACE所在的平面互相垂直,BD⊂平面ABCD,平面ABCD∩平面ACE=AC,
∴BD⊥平面ACE,∵EO⊂平面ACE,
∴BD⊥EO,∵EO∥BF,∴BF⊥BD.(14分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
“點(diǎn)在曲線(xiàn)上”是“點(diǎn)的坐標(biāo)滿(mǎn)足方程”的 條件.
填(充分不必要條件 必要不充分條件 充要條件)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)的圖象關(guān)于點(diǎn)(1,0)中心對(duì)稱(chēng),則a的值為_(kāi)______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在四棱錐P ABCD中,PA⊥底面ABCD,AC⊥CD,∠DAC=60°,AB=BC=AC,E是PD的中點(diǎn),F為ED的中點(diǎn).
(1)求證:平面PAC⊥平面PCD;
(2)求證:CF∥平面BAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
某商場(chǎng)對(duì)A品牌的商品進(jìn)行了市場(chǎng)調(diào)查,預(yù)計(jì)2012年從1月起前x個(gè)月顧客對(duì)A品牌的商品的需求總量P(x)件與月份x的近似關(guān)系是:
P(x)=x(x+1)(41-2x)(x≤12且x∈N*)
(1)寫(xiě)出第x月的需求量f(x)的表達(dá)式;
(2)若第x月的銷(xiāo)售量g(x)=
(單位:件),每件利潤(rùn)q(x)元與月份x的近似關(guān)系為:q(x)=,問(wèn):該商場(chǎng)銷(xiāo)售A品牌商品,預(yù)計(jì)第幾月的月利潤(rùn)達(dá)到最大值?月利潤(rùn)最大值是多少?(e6≈403)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若(a-4i)i=b-i,(a,b∈R,i為虛數(shù)單位),則復(fù)數(shù)z=a+bi在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于( )
A.第一象限 B. 第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)幾何體的三視圖如圖所示(單位長(zhǎng)度:cm),則此幾何體的表面積是( )
A.(20+4)cm2 B. 21 cm2 C.(24+4)cm2 D. 24 cm2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知一個(gè)幾何體的三視圖如圖所示,根據(jù)圖中尺寸可得該幾何體的表面積為( )
A.26 B.24+4 c.28+ D.26+2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com