直線(m+2)x+(2-m)y=2m在x軸上的截距為3,則m的值是( 。
A、
6
5
B、-
6
5
C、6
D、-6
考點:直線的一般式方程
專題:直線與圓
分析:利用直線的截距的意義即可得出.
解答: 解:∵直線(m+2)x+(2-m)y=2m在x軸上的截距為3,
∴直線過(3,0),
代入可得3(m+2)=2m,解得m=-6.
故選:D.
點評:本題考查了直線的截距的意義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示是一樣本的頻率分布直方圖,則由圖形中的數(shù)據(jù),可以估計眾數(shù)與中位數(shù)分別為( 。
A、10  13
B、12.5   12
C、12.5  13
D、10  15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的偶函數(shù),且在(0,+∞)上單調(diào)遞減,則f(a2-2a+3)與f(-2)的大小關(guān)系為( 。
A、f(a2-2a+3)>f(-2)
B、f(a2-2a+3)<f(-2)
C、f(a2-2a+3)≥f(-2)
D、f(a2-2a+3)≤f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
1
3
(x<0)
x2-x-3,(x≥0)
,若f(a)<-1,則實數(shù)a的取值范圍是( 。
A、(-∞,-1)
B、(-∞,-1)∪[0,2)
C、(2,+∞)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象向右平移1個單位長度后關(guān)于y軸對稱,當(dāng)x2>x1>-1時,
f(x2)-f(x1)
x2-x1
>0恒成立,設(shè)a=f(-2),b=f(-
1
2
),c=f(3),則a,b,c的大小關(guān)系為(  )
A、c>a>b
B、c>b>a
C、a>c>b
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線y=x+a與圓x2+y2=4交于點A、B,若
OA
OB
=-2
(O為坐標(biāo)原點),則實數(shù)a的為(  )
A、
2
B、
 
+
-
2
C、
 
+
-
6
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx,下面結(jié)論錯誤的是( 。
A、f(x)的最小正周期是2π
B、f(x)在[0,
π
2
]上單調(diào)遞增
C、f(x)[
π
4
,
3
4
π]上的最大值為
2
2
D、f(x)的值域為[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知sin2B-sin2C-sin2A=sinAsinC,則角B的大小為( 。
A、150°B、30°
C、120°D、60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正數(shù)數(shù)列{an}的前n項和Sn滿足:2Sn=an2+an
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
2an
(2an-1)(2an+1-1)
+(-1)nan,求數(shù)列{bn}的前2n項和.

查看答案和解析>>

同步練習(xí)冊答案