已知函數(shù)f(x)=sinx,下面結(jié)論錯誤的是( 。
A、f(x)的最小正周期是2π
B、f(x)在[0,
π
2
]上單調(diào)遞增
C、f(x)[
π
4
,
3
4
π]上的最大值為
2
2
D、f(x)的值域為[-1,1]
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)正弦函數(shù)y=sinx的圖象和性質(zhì),逐一判斷四個答案的正誤,可得結(jié)論.
解答: 解:∵函數(shù)f(x)=sinx的最小正周期是2π,故A正確;
函數(shù)f(x)=sinx在[-
π
2
+2kπ,
π
2
+2kπ](k∈Z)上為增函數(shù),故B正確;
函數(shù)f(x)=sinx在[
π
4
,
3
4
π]上的最大值為1,故C錯誤;
函數(shù)f(x)=sinx的值域為[-1,1],故D正確;
故選:C
點(diǎn)評:本題考查的知識點(diǎn)是正弦函數(shù)y=sinx的圖象和性質(zhì),熟練掌握正弦函數(shù)y=sinx的圖象和性質(zhì),是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ex-x-2的單調(diào)遞減區(qū)間是( 。
A、(-∞,0)
B、(0,+∞)
C、(-∞,1)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足條件
x+2y-5≤0
2d+y-4≤0
x≥0
y≥1
 
目標(biāo)函數(shù)z=2x-y,則( 。
A、zmax=
5
2
B、zmax=0
C、zmax=-1
D、zmax=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線(m+2)x+(2-m)y=2m在x軸上的截距為3,則m的值是(  )
A、
6
5
B、-
6
5
C、6
D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a≤3”是“函數(shù)f(x)=x2-2ax+2在區(qū)間[3,+∞)內(nèi)單調(diào)遞增”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n∈R,則“m≠0或n≠0”是“mn≠0”的(  )
A、必要不充分條件
B、充分不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:|2x-3|<1,q:
x-3
x-1
≤0,則p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)的定義域:
(1)已知函數(shù)y=F(x)定義域為[1,3],求函數(shù)y=F(2x+1)的定義域;
(2)已知函數(shù)y=F(2x+1)的定義域為[1,3],求函數(shù)y=F(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x2+2)=x4+4x2,求f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案