如圖11-1,四棱錐P—ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中點。
(1)證明:面PAD⊥面PCD;
(2)求AC與PB所成的角;
(3)求面AMC與面BMC所成二面角A-CM-B的大小。
科目:高中數(shù)學 來源: 題型:
已知數(shù)列{an}中,a1=1,an+1=(an+)(n∈N*),且{an}存在極限。
(1)證明:{an}時先增后減數(shù)列,并求an的最大值;
(2)已知圓錐曲線Cn的方程為:設Cn=C,求曲線C的方程并求曲線C的面積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
在正方體ABCDA1B1C1D1中,E,F(xiàn)分別為棱AA1,CC1的中點,則在空間中與三條直線A1D1,EF,CD都相交的直線( )
A.不存在 B.有且只有兩條 C.有且只有三條 D.有無數(shù)條
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°E、F分別是AC、AD上的動點,且(0<λ<1),如圖。
(1)求證:不論λ為何值,恒有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
矩形ABCD的兩邊AB=3,AD=4,PA⊥平面ABCD,且PA=,則二面角A-BD-P的度數(shù)為 ( )
A.30° B.45° C.60° D.75°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,AC是圓O的直徑,點B在圓O上,∠BAC=30°,BM⊥AC交AC于點M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1.
(1)證明:EM⊥BF;
(2)求平面BEF與平面ABC所成的銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com