己知在平面直角坐標(biāo)系xOy中,圓O的參數(shù)方程為
x=2cosα
y=2sinα
(α為參數(shù)).以原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρ(sinθ-cosθ)=1,直線l與圓M相交于A,B兩點(diǎn),求弦AB的長(zhǎng).
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:利用sin2α+cos2α=1可得圓O的普通方程,把直線l的極坐標(biāo)方程化為直角坐標(biāo)方程,再利用點(diǎn)到直線的距離公式可得圓心O(0,0)到直線l的距離d,再利用弦長(zhǎng)公式可得|AB|=2
r2-d2
解答: 解:由圓O的參數(shù)方程
x=2cosα
y=2sinα
(α為參數(shù)),利用sin2α+cos2α=1可得圓O:x2+y2=4,
又直線l的極坐標(biāo)方程為ρ(sinθ-cosθ)=1可得直線l:x-y+1=0,
圓心O(0,0)到直線l的距離d=
1
2
=
2
2
,
弦長(zhǎng)AB=2
22-(
2
2
)
2
=
14
點(diǎn)評(píng):本題考查了圓的參數(shù)方程化為普通方程、極坐標(biāo)方程化為直角坐標(biāo)方程、點(diǎn)到直線的距離公式、弦長(zhǎng)公式,考查了計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)等式中,一定成立的是( 。
A、logax-logay=loga
x
y
B、am•an=amn
C、
nan
=a
D、lg2•lg3=lg5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知凼數(shù)f(x)=log3(ax2-x+1),其中a∈R
(1)若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍
(2)當(dāng)a=1時(shí),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某機(jī)械廠生產(chǎn)一種產(chǎn)品,產(chǎn)品被測(cè)試指標(biāo)大于或等于90為優(yōu)等次,大于或等于80小于90為良等次,小于80為差等次.生產(chǎn)一件優(yōu)等次產(chǎn)品盈利100元,生產(chǎn)一件良等次產(chǎn)品盈利60元,生產(chǎn)一件差等次產(chǎn)品虧損20元.現(xiàn)隨機(jī)抽出高級(jí)技工甲和中級(jí)技工乙生產(chǎn)的這種產(chǎn)品各100件進(jìn)行檢測(cè),結(jié)果統(tǒng)計(jì)如表:
測(cè)試指標(biāo)[70,75)[75,80)[80,85)[85,90)[90,95)[95,100)
3720302515
51523272010
根據(jù)表中統(tǒng)計(jì)得到甲、乙兩人生產(chǎn)這種產(chǎn)品為優(yōu)、良、差等次的頻率,現(xiàn)分別作為他們每次生產(chǎn)一件這種產(chǎn)品的等次互不受影響.
(1)計(jì)算高級(jí)技工甲生產(chǎn)三件產(chǎn)品,至少有2件優(yōu)等品的概率;
(2)甲、乙各生產(chǎn)一件產(chǎn)品給工廠帶來的利潤(rùn)之和記為X元(利潤(rùn)=盈利-虧損).求隨機(jī)變量X的頻率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=|x+1|+|x-2|的最小值為m.
(Ⅰ)求m的值;
(Ⅱ)若a,b,c是正實(shí)數(shù),且滿足a+b+c=m,求證:a2+b2+c2≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知c是雙曲線M:
x2
a2
-
y2
b2
=1(a>0,b>0)的半焦距,則
c
a+b
的最小值是( 。
A、
2
B、
2
2
C、
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“ALS冰桶挑戰(zhàn)賽”是一項(xiàng)社交網(wǎng)絡(luò)上發(fā)起的籌款活動(dòng),活動(dòng)規(guī)定:被邀請(qǐng)者要么在24小時(shí)內(nèi)接受挑戰(zhàn),要么選擇為慈善機(jī)構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動(dòng),若被邀請(qǐng)者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請(qǐng)另外3個(gè)人參與這項(xiàng)活動(dòng).假設(shè)每個(gè)人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.
(1)若某被邀請(qǐng)者接受挑戰(zhàn)后,對(duì)其他3個(gè)人發(fā)出邀請(qǐng),則這3個(gè)人中至少有2個(gè)人接受挑戰(zhàn)的概率是多少?
(2)假定(1)中被邀請(qǐng)到的3個(gè)人中恰有兩個(gè)接受挑戰(zhàn),根據(jù)活動(dòng)規(guī)定,現(xiàn)記X為接下來被邀請(qǐng)到的6個(gè)人中接受挑戰(zhàn)的人數(shù),求X的分布列和均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右頂點(diǎn)作x軸的垂線與C的一條漸近線相交于A.若以C的右焦點(diǎn)為圓心、半徑為2的圓經(jīng)過A、O兩點(diǎn)(O為坐標(biāo)原點(diǎn)),則雙曲線C的方程為( 。
A、x2-
y2
3
=1
B、x2-
y2
4
=1
C、
x2
4
-
y2
12
=1
D、
x2
12
-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α為第三象限角,則下列各式中不成立的是  ( 。
A、tanα-sinα<0
B、sinα+cosα<0
C、cosα-tanα<0
D、tanαsinα<0

查看答案和解析>>

同步練習(xí)冊(cè)答案