(理)二項(xiàng)式(1+x)n展開式的二項(xiàng)式系數(shù)之和為64,則(1-x)n展開式第四項(xiàng)的系數(shù)為( 。
A、15B、20
C、-20D、-15
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:由條件利用二項(xiàng)式系數(shù)的性質(zhì)求得n=6,再根據(jù)(1-x)n展開式第四項(xiàng)的解析式,求得(1-x)n展開式第四項(xiàng)的系數(shù).
解答: 解:由題意可得2n=64,∴n=6,
則(1-x)n展開式第四項(xiàng)為 T4=
C
3
6
•(-x)3,
故(1-x)n展開式第四項(xiàng)的系數(shù)為-
C
3
6
=-20,
故選:C.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-cosα=-
1
5
,則sin2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+ax)(1+x)5的展開式中x2的系數(shù)為-5,則a=( 。
A、-4B、-3C、-2D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin(x+
π
2
),g(x)=cos(x-
π
2
),則下列結(jié)論中不正確的是( 。
A、函數(shù)y=f(x)•g(x)的最小正周期為π
B、函數(shù)y=f(x)•g(x)的最大值為
1
2
C、函數(shù)y=f(x)•g(x)的圖象關(guān)于點(diǎn)(
π
4
,0)成中心對(duì)稱
D、將函數(shù)f(x)的圖象向右平移
π
2
個(gè)單位后得到函數(shù)g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,若對(duì)于任意n∈N*,點(diǎn)Pn(n,Sn)都在函數(shù)y=2x+1圖象上,則數(shù)列{an}( 。
A、是等差數(shù)列不是等比數(shù)列
B、是等比數(shù)列不是等差數(shù)列
C、是常數(shù)列
D、既不是等差數(shù)列也不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題“a≥b⇒c>d”、“c>da≥b”和“a<b?e≤f”都是真命題,那么“c≤d”是“e≤f”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=cosωx-
3
sinωx的圖象向左平移
π
2
個(gè)單位,若所得的圖象與原圖象重合,則ω的值不可能等于(  )
A、4B、6C、8D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=2x2-12x+19的頂點(diǎn)坐標(biāo)是(  )
A、(3,1)
B、(3,-1)
C、(-3,1)
D、(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)g(x)=2x+5x的零點(diǎn)所在的一個(gè)區(qū)間是( 。
A、(0,1)
B、(1,2)
C、(-1,0)
D、(-2,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案