已知實數(shù)x,y滿足(x-2)2+(y+1)2=1,則2x-y的最大值為________,最小值為________.

 

5+,5-

【解析】令b=2x-y,則b為直線2x-y=b在y軸上的截距的相反數(shù),當直線2x-y=b與圓相切時,b取得最值.由=1.解得b=5±,所以2x-y的最大值為5+,最小值為5-.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第7課時練習卷(解析版) 題型:解答題

如圖,正方形ABCD內接于橢圓=1(a>b>0),且它的四條邊與坐標軸平行,正方形MNPQ的頂點M、N在橢圓上,頂點P、Q在正方形的邊AB上,且A、M都在第一象限.

(1)若正方形ABCD的邊長為4,且與y軸交于E、F兩點,正方形MNPQ的邊長為2.

①求證:直線AM與△ABE的外接圓相切;

②求橢圓的標準方程;

(2)設橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:解答題

如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M、N均在直線x=5上.圓弧C1的圓心是坐標原點O,半徑為r1=13;圓弧C2過點A(29,0).

(1)求圓弧C2所在圓的方程;

(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由;

(3)已知直線l:x-my-14=0與曲線C交于E、F兩點,當EF=33時,求坐標原點O到直線l的距離.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:填空題

已知圓O:x2+y2=4,則過點P(2,4)與圓O相切的切線方程為________________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:解答題

如圖,已知點A(-1,0)與點B(1,0),C是圓x2+y2=1上的動點,連結BC并延長至D,使得CD=BC,求AC與OD的交點P的軌跡方程.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:解答題

在平面直角坐標系xOy中,二次函數(shù)f(x)=x2+2x+b(x∈R)與兩坐標軸有三個交點.記過三個交點的圓為圓C.

(1)求實數(shù)b的取值范圍;

(2)求圓C的方程;

(3)圓C是否經過定點(與b的取值無關)?證明你的結論.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題

方程x2+y2+4mx-2y+5m=0表示圓的充要條件是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第3課時練習卷(解析版) 題型:解答題

已知直線l經過點P(3,1),且被兩平行直線l1:x+y+1=0和l2:x+y+6=0截得的線段之長為5,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:填空題

設拋物線y2=8x的準線與x軸交于點Q,若過點Q的直線l與拋物線有公共點,則直線l的斜率的取值范圍是________.

 

查看答案和解析>>

同步練習冊答案