已知圓O:x2+y2=4,則過點(diǎn)P(2,4)與圓O相切的切線方程為________________.

 

3x-4y+10=0或x=2

【解析】∵點(diǎn)P(2,4)不在圓O上,∴切線PT的直線方程可設(shè)為y=k(x-2)+4.根據(jù)d=r,∴=2,解得k=,所以y=(x-2)+4,即3x-4y+10=0.因為過圓外一點(diǎn)作圓的切線應(yīng)該有兩條,可見另一條直線的斜率不存在.易求另一條切線為x=2.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時練習(xí)卷(解析版) 題型:解答題

已知雙曲線=1(a>0,b>0)的兩條漸近線方程為y=±x,若頂點(diǎn)到漸近線的距離為1,求雙曲線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第6課時練習(xí)卷(解析版) 題型:填空題

在平面直角坐標(biāo)系中,有橢圓=1(a>b>0)的焦距為2c,以O(shè)為圓心,a為半徑的圓.過點(diǎn)作圓的兩切線互相垂直,則離心率e=________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第5課時練習(xí)卷(解析版) 題型:填空題

在平面直角坐標(biāo)系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓C有公共點(diǎn),則k的最大值是____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第5課時練習(xí)卷(解析版) 題型:解答題

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).

(1)求證:不論m取什么實數(shù),直線l與圓C恒交于兩點(diǎn);

(2)求直線被圓C截得的弦長最小時直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時練習(xí)卷(解析版) 題型:填空題

圓x2+y2-4x=0在點(diǎn)P(1,)處的切線方程為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時練習(xí)卷(解析版) 題型:填空題

已知實數(shù)x,y滿足(x-2)2+(y+1)2=1,則2x-y的最大值為________,最小值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第3課時練習(xí)卷(解析版) 題型:填空題

點(diǎn)(1,cosθ)(其中0≤θ≤π)到直線xsinθ+ycosθ-1=0的距離是,那么θ等于________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時練習(xí)卷(解析版) 題型:填空題

已知雙曲線x2-=1的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線右支上一點(diǎn),則的最小值為________.

 

查看答案和解析>>

同步練習(xí)冊答案