如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點M、N均在直線x=5上.圓弧C1的圓心是坐標原點O,半徑為r1=13;圓弧C2過點A(29,0).

(1)求圓弧C2所在圓的方程;

(2)曲線C上是否存在點P,滿足PA=PO?若存在,指出有幾個這樣的點;若不存在,請說明理由;

(3)已知直線l:x-my-14=0與曲線C交于E、F兩點,當EF=33時,求坐標原點O到直線l的距離.

 

(1)x2+y2-28x-29=0.(2)P不存在(3)

【解析】(1)由題意得,圓弧C1所在圓的方程為x2+y2=169.令x=5,解得M(5,12),N(5,-12),又C2過點A(29,0),設圓弧C2所在圓方程為x2+y2+Dx+Ey+F=0,

,解得

所以圓弧C2所在圓的方程為x2+y2-28x-29=0.

(2)假設存在這樣的點P(x,y),則由PA=PO,得(x-29)2+y2=30(x2+y2),即x2+y2+2x-29=0.由

解得x=-70(舍去);

解得x=0(舍去).所以這樣的點P不存在.

(3)因為圓弧C1、C2所在圓的半徑分別為r1=13,r2=15,因為EF>2r1,EF>2r2,所以E、F兩點分別在兩個圓弧上.設點O到直線l的距離為d,因為直線l恒過圓弧C2所在圓的圓心(14,0),所以EF=15+,

=18,解得d2=,所以點O到直線l的距離為.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第9課時練習卷(解析版) 題型:填空題

拋物線y=ax2的準線方程是y=2,則a的值是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第7課時練習卷(解析版) 題型:填空題

F1,F(xiàn)2是橢圓+y2=1的左右焦點,點P在橢圓上運動.則的最大值是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第6課時練習卷(解析版) 題型:填空題

在平面直角坐標系中,有橢圓=1(a>b>0)的焦距為2c,以O為圓心,a為半徑的圓.過點作圓的兩切線互相垂直,則離心率e=________.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第6課時練習卷(解析版) 題型:填空題

設Ρ是橢圓上的點.若F1、F2是橢圓的兩個焦點,則|PF1|+|PF2|=________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:填空題

在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是____________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:解答題

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).

(1)求證:不論m取什么實數(shù),直線l與圓C恒交于兩點;

(2)求直線被圓C截得的弦長最小時直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題

已知實數(shù)x,y滿足(x-2)2+(y+1)2=1,則2x-y的最大值為________,最小值為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題

已知拋物線x2=4y的焦點為F,過焦點F且不平行于x軸的動直線交拋物線于A、B兩點,拋物線在A、B兩點處的切線交于點M.

(1)求證:A、M、B三點的橫坐標成等差數(shù)列;

(2)設直線MF交該拋物線于C、D兩點,求四邊形ACBD面積的最小值.

 

查看答案和解析>>

同步練習冊答案