(本小題滿分14分)
已知函數(shù).
(Ⅰ) 求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)的圖像在點處的切線的傾斜角為,問:在什么范圍取值時,對于任意的,函數(shù)g(x)=x3 + x2在區(qū)間上總存在極值?
(Ⅲ)當(dāng)時,設(shè)函數(shù),若在區(qū)間上至少存在一個,
使得成立,試求實數(shù)的取值范圍.
(Ⅰ)當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;
當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.
(Ⅱ)當(dāng)在內(nèi)取值時,對于任意的,函數(shù)在區(qū)間上總存在極值.
(Ⅲ)
【解析】
試題分析:(I)求導(dǎo),根據(jù)導(dǎo)數(shù)大(。┯诹,求得函數(shù)f(x)的增(減)區(qū)間,要注意含參時對參數(shù)進(jìn)行討論.
(II)根據(jù)可得,從而可求出,進(jìn)而得到,那么本小題就轉(zhuǎn)化為有兩個不等實根且至少有一個在區(qū)間內(nèi),然后結(jié)合二次函數(shù)的圖像及性質(zhì)求解即可.
(III)當(dāng)a=2時,令,則
.
然后對p分和兩種情況利用導(dǎo)數(shù)進(jìn)行求解即可.
(Ⅰ)由知
當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;
當(dāng)時,函數(shù)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是.
(Ⅱ)由, ∴,.
故,
∴.
∵ 函數(shù)在區(qū)間上總存在極值,
∴有兩個不等實根且至少有一個在區(qū)間內(nèi)
又∵函數(shù)是開口向上的二次函數(shù),且,
∴ 由,
∵在上單調(diào)遞減,所以;
∴,由,解得;
綜上得:
所以當(dāng)在內(nèi)取值時,對于任意的,函數(shù)在區(qū)間上總存在極值.
(Ⅲ)令,則
.
①當(dāng)時,由得,從而,
所以,在上不存在使得;
②當(dāng)時,,,
在上恒成立,
故在上單調(diào)遞增.
故只要,解得
綜上所述, 的取值范圍是
考點:本題考查了導(dǎo)數(shù)在求函數(shù)單調(diào)區(qū)間極值最值當(dāng)中的應(yīng)用.
點評:利用導(dǎo)數(shù)求單調(diào)區(qū)間時,要注意含參時要進(jìn)行討論,并且對于與不等式結(jié)合的綜合性比較強(qiáng)的題目,要注意解決不等式問題時,構(gòu)造函數(shù)利用導(dǎo)數(shù)研究單調(diào)性極值最值研究.
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進(jìn)行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com