在直角坐標系xOy中,已知曲線C的參數(shù)方程是
y=sinθ-2
x=cosθ
(θ是參數(shù)),若以O(shè)為極點,x軸的正半軸為極軸,則曲線C的極坐標方程可寫為
 
考點:參數(shù)方程化成普通方程
專題:坐標系和參數(shù)方程
分析:把參數(shù)方程化為普通方程、再把把直角坐標方程化為極坐標方程.
解答: 解:把曲線C的參數(shù)方程是
y=sinθ-2
x=cosθ
(θ是參數(shù)),消去參數(shù)化為直角坐標方程為 (x+2)2+y2=1.
再化為極坐標方程為(ρcosθ)2+(ρsinθ+2)2=1,化簡可得 ρ2+4ρsinθ+3=0,
故答案為:ρ2+4ρsinθ+3=0.
點評:本題主要考查把參數(shù)方程化為普通方程、把極坐標方程化為直角坐標方程的方法,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:x2-5|x|+6<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在棱長為2的正方體ABCD-A1B1C1D1中,E為CC1的中點.
(Ⅰ)求證:AC1∥面DBE;
(Ⅱ)求三棱錐B1-DBE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由于“營養(yǎng)快線事件”,工商部門決定對重百超市銷售的A公司生產(chǎn)的4種飲料和B公司生產(chǎn)的2種飲料進行突擊檢測,檢驗員從以上6種飲料中每次抽取一種逐一不放回地進行檢測.
(1)求前三次檢測的飲料中至少有一種是B公司生產(chǎn)的概率;
(2)記檢測完A公司的飲料時已經(jīng)檢測的B公司生產(chǎn)的飲料總數(shù)為ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義集合A與B的差集A-B={x|x∈A且x∉B},記“從集合A中任取一個元素x,x∈A-B”為事件E,“從集合A中任取一個元素x,x∈A∩B”為事件F;P(E)為事件E發(fā)生的概率,P(F)為事件F發(fā)生的概率,當a、b∈Z,且a<-1,b≥1時,設(shè)集合A={x∈Z|a<x<0},集合B={x∈Z|-b<x<b}.給出以下判斷:
①當a=-4,b=2時P(E)=
2
3
,P(F)=
1
3
; 
②總有P(E)+P(F)=1成立;
③若P(E)=1,則a=-2,b=1;        
④P(F)不可能等于1.
其中所有正確判斷的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a≠0)的圖象關(guān)于直線x=-
b
2a
對稱,則方程m[f(x)]2+nf(x)+p的根是否關(guān)于x=-
b
2a
對稱(a,b,c,m,n,p為任意非零實數(shù))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
k
0
是矩陣A=
1   0
m  2
的一個特征向量.
(Ⅰ)求m的值和向量
k
0
相應(yīng)的特征值;
(Ⅱ)若矩陣B=
3  2
2  1
,求矩陣B-1A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A(-1,0,1),B(x,y,4),C(1,4,7),且A、B、C三點在同一直線上,則實數(shù)x-y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把直線λx-y+2=0按向量
a
=(2,0)平移后恰與x2+y2-4y+2x-2=0相切,則實數(shù)λ的值為
 

查看答案和解析>>

同步練習冊答案