若當(dāng)P(m,n)為圓x2+(y-1)2=1上任意一點(diǎn)時,等式m+n+c=0恒成立,則c的取值范圍是( 。
A、-1-
2
≤c≤
2
-1
B、
2
-1≤c≤
2
+1
C、c≤-
2
-1
D、c≥
2
-1
考點(diǎn):圓的標(biāo)準(zhǔn)方程
專題:直線與圓
分析:令m=cosθ,n=1+sinθ,由等式m+n+c=0 可得c=-m-n=-
2
sin(θ+
π
4
)-1,再根據(jù)正弦函數(shù)的值域求得c的范圍.
解答: 解:由題意可得m2+(n-1)2=1,令m=cosθ,n=1+sinθ,
由等式m+n+c=0 可得c=-m-n=-cosθ-sinθ-1=-
2
sin(θ+
π
4
)-1,
再由-1≤sin(θ+
π
4
)≤1,可得-
2
-1≤c≤
2
-1,
故選:A.
點(diǎn)評:本題主要考查圓的標(biāo)準(zhǔn)方程,三角恒等變換,正弦函數(shù)的值域,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若c2-ab=a2+b2,則∠C=( 。
A、60°B、90°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖網(wǎng)格中的圖形為某個多面體的三視圖,每個小正方形的邊長為1,則該多面體的外接圓的表面積為( 。
A、3π
B、32
3
π
C、48π
D、192π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosθ,sinθ),θ∈(
π
2
,π),
b
=(0,-1),則
a
b
的夾角等于( 。
A、θ-
π
2
B、
π
2
C、
2
D、θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行如圖所示的程序框圖,輸入正整數(shù)N(N≥2)和實(shí)數(shù)a1,a2,…,an,輸出A,B,則( 。
A、A和B分別是a1,a2,…,an中最小的數(shù)和最大的數(shù)
B、A和B分別是a1,a2,…,an中最大的數(shù)和最小的數(shù)
C、
A+B
2
為a1,a2,…,an的算術(shù)平均數(shù)
D、A+B為a1,a2,…,an的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在10個形狀大小均相同的球中有6個紅球和4個白球,不放回地依次摸出2個球,在第1次摸出紅球的條件下,第2次也摸到紅球的概率為(  )
A、
3
5
B、
2
5
C、
5
9
D、
1
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β∈R,設(shè)p:α>β,設(shè)q:α-sinβcosα>β-sinαcosβ,則p是q的( 。
A、充分必要條件
B、充分不必要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x2-mx+m+1=0(k∈R)的兩實(shí)根為sinθ和cosθ,θ∈(0,2π),sinθ+cosθ求:
(1)m的值;
(2)
sinθ
1+
1
tanθ
+
cosθ
1+tanθ
的值;
(3)方程的兩實(shí)根及此時θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=9x-2×3x+4,x∈[0,2]
(1)設(shè)t=3x,x∈[0,2],求t的最大值與最小值;
(2)求f(x)的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案